首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.  相似文献   

2.
3.
The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella).  相似文献   

4.
5.
The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus. Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms.  相似文献   

6.
The architecture of the network of protein–protein physical interactions in Saccharomyces cerevisiae is exposed through the combination of two complementary theoretical network measures, betweenness centrality and ‘Q-modularity’. The yeast interactome is characterized by well-defined topological modules connected via a small number of inter-module protein interactions. Should such topological inter-module connections turn out to constitute a form of functional coordination between the modules, we speculate that this coordination is occurring typically in a pairwise fashion, rather than by way of high-degree hub proteins responsible for coordinating multiple modules. The unique non-hub-centric hierarchical organization of the interactome is not reproduced by gene duplication-and-divergence stochastic growth models that disregard global selective pressures.  相似文献   

7.
8.
Coupling cell cycle with nutrient availability is a crucial process for all living cells. But how bacteria control cell division according to metabolic supplies remains poorly understood. Here, we describe a molecular mechanism that coordinates central metabolism with cell division in the α-proteobacterium Caulobacter crescentus. This mechanism involves the NAD-dependent glutamate dehydrogenase GdhZ and the oxidoreductase-like KidO. While enzymatically active GdhZ directly interferes with FtsZ polymerization by stimulating its GTPase activity, KidO bound to NADH destabilizes lateral interactions between FtsZ protofilaments. Both GdhZ and KidO share the same regulatory network to concomitantly stimulate the rapid disassembly of the Z-ring, necessary for the subsequent release of progeny cells. Thus, this mechanism illustrates how proteins initially dedicated to metabolism coordinate cell cycle progression with nutrient availability.  相似文献   

9.
Somatic complementation by fusion of two mutant cells and mixing of their cytoplasms occurs when the genetic defect of one fusion partner is cured by the functional gene product provided by the other. We have found that complementation of mutational defects in the network mediating stimulus-induced commitment and sporulation of Physarum polycephalum may reflect time-dependent changes in the signaling state of its molecular building blocks. Network perturbation by fusion of mutant plasmodial cells in different states of activation, and the time-resolved analysis of somatic complementation effects can be used to systematically probe network structure and dynamics. Time-resolved somatic complementation quantitatively detects regulatory interactions between the functional modules of a network, independent of their biochemical composition or subcellular localization, and without being limited to direct physical interactions.  相似文献   

10.
11.
12.
Z Wen  ZP Liu  Y Yan  G Piao  Z Liu  J Wu  L Chen 《PloS one》2012,7(7):e41854
High-throughput biological data offer an unprecedented opportunity to fully characterize biological processes. However, how to extract meaningful biological information from these datasets is a significant challenge. Recently, pathway-based analysis has gained much progress in identifying biomarkers for some phenotypes. Nevertheless, these so-called pathway-based methods are mainly individual-gene-based or molecule-complex-based analyses. In this paper, we developed a novel module-based method to reveal causal or dependent relations between network modules and biological phenotypes by integrating both gene expression data and protein-protein interaction network. Specifically, we first formulated the identification problem of the responsive modules underlying biological phenotypes as a mathematical programming model by exploiting phenotype difference, which can also be viewed as a multi-classification problem. Then, we applied it to study cell-cycle process of budding yeast from microarray data based on our biological experiments, and identified important phenotype- and transition-based responsive modules for different stages of cell-cycle process. The resulting responsive modules provide new insight into the regulation mechanisms of cell-cycle process from a network viewpoint. Moreover, the identification of transition modules provides a new way to study dynamical processes at a functional module level. In particular, we found that the dysfunction of a well-known module and two new modules may directly result in cell cycle arresting at S phase. In addition to our biological experiments, the identified responsive modules were also validated by two independent datasets on budding yeast cell cycle.  相似文献   

13.
14.
Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes.  相似文献   

15.
16.
17.
18.
19.
20.
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain''s putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号