首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most QTL mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may lead to detection of false positive QTL. To improve the robustness of Bayesian QTL mapping methods, the normal distribution for residuals is replaced with a skewed Student-t distribution. The latter distribution is able to account for both heavy tails and skewness, and both components are each controlled by a single parameter. The Bayesian QTL mapping method using a skewed Student-t distribution is evaluated with simulated data sets under five different scenarios of residual error distributions and QTL effects.  相似文献   

2.
In most quantitative trait loci (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection, leading to detection of false positive QTL. To improve the robustness of QTL mapping methods, we replace the normal distribution assumption for residuals in a multiple QTL model with a Student-t distribution that is able to accommodate residual outliers. A Robust Bayesian mapping strategy is proposed on the basis of the Bayesian shrinkage analysis for QTL effects. The simulations show that Robust Bayesian mapping approach can substantially increase the power of QTL detection when the normality assumption does not hold and applying it to data already normally distributed does not influence the result. The proposed QTL mapping method is applied to mapping QTL for the traits associated with physics–chemical characters and quality in rice. Similarly to the simulation study in the real data case the robust approach was able to detect additional QTLs when compared to the traditional approach. The program to implement the method is available on request from the first or the corresponding author. Xin Wang and Zhongze Piao contributed equally to this study.  相似文献   

3.
The successful implementation of Bayesian shrinkage analysis of high-dimensional regression models, as often encountered in quantitative trait locus (QTL) mapping, is contingent upon the choice of suitable sparsity-inducing priors. In practice, the shape (that is, the rate of tail decay) of such priors is typically preset, with no regard for the range of plausible alternatives and the fact that the most appropriate shape may depend on the data at hand. This study is presumably the first attempt to tackle this oversight through the shape-adaptive shrinkage prior (SASP) approach, with a focus on the mapping of QTLs in experimental crosses. Simulation results showed that the separation between genuine QTL effects and spurious ones can be made clearer using the SASP-based approach as compared with existing competitors. This feature makes our new method a promising approach to QTL mapping, where good separation is the ultimate goal. We also discuss a re-estimation procedure intended to improve the accuracy of the estimated genetic effects of detected QTLs with regard to shrinkage-induced bias, which may be particularly important in large-scale models with collinear predictors. The re-estimation procedure is relevant to any shrinkage method, and is potentially valuable for many scientific disciplines such as bioinformatics and quantitative genetics, where oversaturated models are booming.  相似文献   

4.
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared to composite functional mapping.  相似文献   

5.
Fang M  Jiang D  Chen X  Pu L  Liu S 《Genetica》2008,134(3):367-375
Using the data of crosses of multiple of inbred lines for mapping QTL can increase QTL detecting power compared with only cross of two inbred lines. Although many fixed-effect model methods have been proposed to analyze such data, they are largely based on one-QTL model or main effect model, and the interaction effects between QTL are always neglected. However, effectively separating the interaction effects from the residual error can increase the statistical power. In this article, we both extended the novel Bayesian model selection method and Bayesian shrinkage estimation approaches to multiple inbred line crosses. With two extensions, interacting QTL are effectively detected with high solution; in addition, the posterior variances for both main effects and interaction effects are also subjected to full Bayesian estimate, which is more optimal than two step approach involved in maximum-likelihood. A series of simulation experiments have been conducted to demonstrate the performance of the methods. The computer program written in FORTRAN language is freely available on request.  相似文献   

6.
Li Z  Sillanpää MJ 《Genetics》2012,190(1):231-249
Bayesian hierarchical shrinkage methods have been widely used for quantitative trait locus mapping. From the computational perspective, the application of the Markov chain Monte Carlo (MCMC) method is not optimal for high-dimensional problems such as the ones arising in epistatic analysis. Maximum a posteriori (MAP) estimation can be a faster alternative, but it usually produces only point estimates without providing any measures of uncertainty (i.e., interval estimates). The variational Bayes method, stemming from the mean field theory in theoretical physics, is regarded as a compromise between MAP and MCMC estimation, which can be efficiently computed and produces the uncertainty measures of the estimates. Furthermore, variational Bayes methods can be regarded as the extension of traditional expectation-maximization (EM) algorithms and can be applied to a broader class of Bayesian models. Thus, the use of variational Bayes algorithms based on three hierarchical shrinkage models including Bayesian adaptive shrinkage, Bayesian LASSO, and extended Bayesian LASSO is proposed here. These methods performed generally well and were found to be highly competitive with their MCMC counterparts in our example analyses. The use of posterior credible intervals and permutation tests are considered for decision making between quantitative trait loci (QTL) and non-QTL. The performance of the presented models is also compared with R/qtlbim and R/BhGLM packages, using a previously studied simulated public epistatic data set.  相似文献   

7.
Bayesian mapping of quantitative trait loci for complex binary traits   总被引:13,自引:0,他引:13  
Yi N  Xu S 《Genetics》2000,155(3):1391-1403
A complex binary trait is a character that has a dichotomous expression but with a polygenic genetic background. Mapping quantitative trait loci (QTL) for such traits is difficult because of the discrete nature and the reduced variation in the phenotypic distribution. Bayesian statistics are proved to be a powerful tool for solving complicated genetic problems, such as multiple QTL with nonadditive effects, and have been successfully applied to QTL mapping for continuous traits. In this study, we show that Bayesian statistics are particularly useful for mapping QTL for complex binary traits. We model the binary trait under the classical threshold model of quantitative genetics. The Bayesian mapping statistics are developed on the basis of the idea of data augmentation. This treatment allows an easy way to generate the value of a hypothetical underlying variable (called the liability) and a threshold, which in turn allow the use of existing Bayesian statistics. The reversible jump Markov chain Monte Carlo algorithm is used to simulate the posterior samples of all unknowns, including the number of QTL, the locations and effects of identified QTL, genotypes of each individual at both the QTL and markers, and eventually the liability of each individual. The Bayesian mapping ends with an estimation of the joint posterior distribution of the number of QTL and the locations and effects of the identified QTL. Utilities of the method are demonstrated using a simulated outbred full-sib family. A computer program written in FORTRAN language is freely available on request.  相似文献   

8.
Yang R  Xu S 《Genetics》2007,176(2):1169-1185
Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits under the maximum-likelihood framework. We fit the growth trajectory by Legendre polynomials. The method intended to map one QTL at a time and the entire QTL analysis involved scanning the entire genome by fitting multiple single-QTL models. In this study, we propose a Bayesian shrinkage analysis for estimating and mapping multiple QTL in a single model. The method is a combination between the shrinkage mapping for individual quantitative traits and the Legendre polynomial analysis for dynamic traits. The multiple-QTL model is implemented in two ways: (1) a fixed-interval approach where a QTL is placed in each marker interval and (2) a moving-interval approach where the position of a QTL can be searched in a range that covers many marker intervals. Simulation study shows that the Bayesian shrinkage method generates much better signals for QTL than the interval-mapping approach. We propose several alternative methods to present the results of the Bayesian shrinkage analysis. In particular, we found that the Wald test-statistic profile can serve as a mechanism to test the significance of a putative QTL.  相似文献   

9.
Xu S 《Genetics》2007,177(2):1255-1258
The shrinkage estimate of a quantitative trait locus (QTL) effect is the posterior mean of the QTL effect when a normal prior distribution is assigned to the QTL. This note gives the derivation of the shrinkage estimate under the multivariate linear model. An important lemma regarding the posterior mean of a normal likelihood combined with a normal prior is introduced. The lemma is then used to derive the Bayesian shrinkage estimates of the QTL effects.  相似文献   

10.
MOTIVATION: In most quantitative trait locus (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection and lead to detection of spurious QTLs. To improve the robustness of QTL mapping methods, we replaced the normal distribution for residuals in multiple interacting QTL models with the normal/independent distributions that are a class of symmetric and long-tailed distributions and are able to accommodate residual outliers. Subsequently, we developed a Bayesian robust analysis strategy for dissecting genetic architecture of quantitative traits and for mapping genome-wide interacting QTLs in line crosses. RESULTS: Through computer simulations, we showed that our strategy had a similar power for QTL detection compared with traditional methods assuming normal-distributed traits, but had a substantially increased power for non-normal phenotypes. When this strategy was applied to a group of traits associated with physical/chemical characteristics and quality in rice, more main and epistatic QTLs were detected than traditional Bayesian model analyses under the normal assumption.  相似文献   

11.
A novel hierarchical quantitative trait locus (QTL) mapping method using a polynomial growth function and a multiple-QTL model (with no dependence in time) in a multitrait framework is presented. The method considers a population-based sample where individuals have been phenotyped (over time) with respect to some dynamic trait and genotyped at a given set of loci. A specific feature of the proposed approach is that, instead of an average functional curve, each individual has its own functional curve. Moreover, each QTL can modify the dynamic characteristics of the trait value of an individual through its influence on one or more growth curve parameters. Apparent advantages of the approach include: (1) assumption of time-independent QTL and environmental effects, (2) alleviating the necessity for an autoregressive covariance structure for residuals and (3) the flexibility to use variable selection methods. As a by-product of the method, heritabilities and genetic correlations can also be estimated for individual growth curve parameters, which are considered as latent traits. For selecting trait-associated loci in the model, we use a modified version of the well-known Bayesian adaptive shrinkage technique. We illustrate our approach by analysing a sub sample of 500 individuals from the simulated QTLMAS 2009 data set, as well as simulation replicates and a real Scots pine (Pinus sylvestris) data set, using temporal measurements of height as dynamic trait of interest.  相似文献   

12.
Methodologies for segregation analysis and QTL mapping in plants   总被引:1,自引:0,他引:1  
Zhang YM  Gai J 《Genetica》2009,136(2):311-318
Most characters of biological interest and economic importance are quantitative traits. To uncover the genetic architecture of quantitative traits, two approaches have become popular in China. One is the establishment of an analytical model for mixed major-gene plus polygenes inheritance and the other the discovery of quantitative trait locus (QTL). Here we review our progress employing these two approaches. First, we proposed joint segregation analysis of multiple generations for mixed major-gene plus polygenes inheritance. Second, we extended the multilocus method of Lander and Green (1987), Jiang and Zeng (1997) to a more generalized approach. Our methodology handles distorted, dominant and missing markers, including the effect of linked segregation distortion loci on the estimation of map distance. Finally, we developed several QTL mapping methods. In the Bayesian shrinkage estimation (BSE) method, we suggested a method to test the significance of QTL effects and studied the effect of the prior distribution of the variance of QTL effect on QTL mapping. To reduce running time, a penalized maximum likelihood method was adopted. To mine novel genes in crop inbred lines generated in the course of normal crop breeding work, three methods were introduced. If a well-documented genealogical history of the lines is available, two-stage variance component analysis and multi-QTL Haseman-Elston regression were suggested; if unavailable, multiple loci in silico mapping was proposed.  相似文献   

13.
In biology, many quantitative traits are dynamic in nature. They can often be described by some smooth functions or curves. A joint analysis of all the repeated measurements of the dynamic traits by functional quantitative trait loci (QTL) mapping methods has the benefits to (1) understand the genetic control of the whole dynamic process of the quantitative traits and (2) improve the statistical power to detect QTL. One crucial issue in functional QTL mapping is how to correctly describe the smoothness of trajectories of functional valued traits. We develop an efficient Bayesian nonparametric multiple-loci procedure for mapping dynamic traits. The method uses the Bayesian P-splines with (nonparametric) B-spline bases to specify the functional form of a QTL trajectory and a random walk prior to automatically determine its degree of smoothness. An efficient deterministic variational Bayes algorithm is used to implement both (1) the search of an optimal subset of QTL among large marker panels and (2) estimation of the genetic effects of the selected QTL changing over time. Our method can be fast even on some large-scale data sets. The advantages of our method are illustrated on both simulated and real data sets.  相似文献   

14.
Quantitative trait loci (QTL)/association mapping aims at finding genomic loci associated with the phenotypes, whereas genomic selection focuses on breeding value prediction based on genomic data. Variable selection is a key to both of these tasks as it allows to (1) detect clear mapping signals of QTL activity, and (2) predict the genome-enhanced breeding values accurately. In this paper, we provide an overview of a statistical method called least absolute shrinkage and selection operator (LASSO) and two of its generalizations named elastic net and adaptive LASSO in the contexts of QTL mapping and genomic breeding value prediction in plants (or animals). We also briefly summarize the Bayesian interpretation of LASSO, and the inspired hierarchical Bayesian models. We illustrate the implementation and examine the performance of methods using three public data sets: (1) North American barley data with 127 individuals and 145 markers, (2) a simulated QTLMAS XII data with 5,865 individuals and 6,000 markers for both QTL mapping and genomic selection, and (3) a wheat data with 599 individuals and 1,279 markers only for genomic selection.  相似文献   

15.
Wu XL  Gianola D  Weigel K 《Genetica》2009,135(3):367-377
Methodology for joint mapping of quantitative trait loci (QTL) affecting continuous and binary characters in experimental crosses is presented. The procedure consists of a Bayesian Gaussian-threshold model implemented via Markov chain Monte Carlo, which bypasses bottlenecks due to high-dimensional integrals required in maximum likelihood approaches. The method handles multiple binary traits and multiple QTL. Modeling of ordered categorical traits is discussed as well. Features of the method are illustrated using simulated datasets representing a backcross design, and the data are analyzed using mixed-trait and single-trait models. The mixed-trait analysis provides greater detection power of a QTL than a single-trait analysis when the QTL affects two or more traits. The number of QTL inferred in the mixed-trait analysis does not pertain to a specific trait, but the roles of each QTL on specific traits can be assessed from estimates of its effects. The impacts of varying incidence level and sample size on the mixed-trait QTL mapping analysis are investigated as well.  相似文献   

16.
Sillanpää MJ  Arjas E 《Genetics》1999,151(4):1605-1619
A general fine-scale Bayesian quantitative trait locus (QTL) mapping method for outcrossing species is presented. It is suitable for an analysis of complete and incomplete data from experimental designs of F2 families or backcrosses. The amount of genotyping of parents and grandparents is optional, as well as the assumption that the QTL alleles in the crossed lines are fixed. Grandparental origin indicators are used, but without forgetting the original genotype or allelic origin information. The method treats the number of QTL in the analyzed chromosome as a random variable and allows some QTL effects from other chromosomes to be taken into account in a composite interval mapping manner. A block-update of ordered genotypes (haplotypes) of the whole family is sampled once in each marker locus during every round of the Markov Chain Monte Carlo algorithm used in the numerical estimation. As a byproduct, the method gives the posterior distributions for linkage phases in the family and therefore it can also be used as a haplotyping algorithm. The Bayesian method is tested and compared with two frequentist methods using simulated data sets, considering two different parental crosses and three different levels of available parental information. The method is implemented as a software package and is freely available under the name Multimapper/outbred at URL http://www.rni.helsinki.fi/mjs/.  相似文献   

17.
Summary A Bayesian method was developed for identifying genetic markers linked to quantitative trait loci (QTL) by analyzing data from daughter or granddaughter designs and single markers or marker pairs. Traditional methods may yield unrealistic results because linkage tests depend on number of markers and QTL gene effects associated with selected markers are overestimated. The Bayesian or posterior probability of linkage combines information from a daughter or granddaughter design with the prior probability of linkage between a marker locus and a QTL. If the posterior probability exceeds a certain quantity, linkage is declared. Upon linkage acceptance, Bayesian estimates of marker-QTL recombination rate and QTL gene effects and frequencies are obtained. The Bayesian estimates of QTL gene effects account for different amounts of information by shrinking information from data toward the mean or mode of a prior exponential distribution of gene effects. Computation of the Bayesian analysis is feasible. Exact results are given for biallelic QTL, and extensions to multiallelic QTL are suggested.  相似文献   

18.
Bayesian shrinkage estimation of quantitative trait loci parameters   总被引:13,自引:0,他引:13       下载免费PDF全文
Wang H  Zhang YM  Li X  Masinde GL  Mohan S  Baylink DJ  Xu S 《Genetics》2005,170(1):465-480
Mapping multiple QTL is a typical problem of variable selection in an oversaturated model because the potential number of QTL can be substantially larger than the sample size. Currently, model selection is still the most effective approach to mapping multiple QTL, although further research is needed. An alternative approach to analyzing an oversaturated model is the shrinkage estimation in which all candidate variables are included in the model but their estimated effects are forced to shrink toward zero. In contrast to the usual shrinkage estimation where all model effects are shrunk by the same factor, we develop a Bayesian method that allows the shrinkage factor to vary across different effects. The new shrinkage method forces marker intervals that contain no QTL to have estimated effects close to zero whereas intervals containing notable QTL have estimated effects subject to virtually no shrinkage. We demonstrate the method using both simulated and real data for QTL mapping. A simulation experiment with 500 backcross (BC) individuals showed that the method can localize closely linked QTL and QTL with effects as small as 1% of the phenotypic variance of the trait. The method was also used to map QTL responsible for wound healing in a family of a (MRL/MPJ x SJL/J) cross with 633 F(2) mice derived from two inbred lines.  相似文献   

19.
多QTL定位的压缩估计方法   总被引:1,自引:0,他引:1  
章元明 《遗传学报》2006,33(10):861-869
本文综述了多标记分析和多QTL定位的压缩估计方法。对于前者,Xu(Genetics,2003,163:789—801)首先提出了Bayesian压缩估计方法。其关键在于让每个效应有一个特定的方差参数,而该方差又服从一定的先验分布,以致能从资料中估计之。由此,能够同时估计大量分子标记基因座的遗传效应,即使大多数标记的效应是可忽略的。然而,对于上位性遗传模型,其运算时间还是过长。为此,笔者将上述思想嵌入极大似然法,提出了惩罚最大似然方法。模拟研究显示:该方法能处理变量个数大于样本容量10倍左右的线性遗传模型。对于后者,本文详细介绍了基于固定区间和可变区间的Bayesian压缩估计方法。固定区间方法可处理中等密度的分子标记资料;可变区间方法则可分析高密度分子标记资料,甚至是上位性遗传模型。对于上位性检测,已介绍的惩罚最大似然方法和可变区间Bayesian压缩估计方法可供利用。应当指出,压缩估计方法在今后的eQTL和QTN定位以及基因互作网络分析等研究中也是有应用价值的。  相似文献   

20.
Localization of a quantitative trait locus via a Bayesian approach   总被引:1,自引:0,他引:1  
A Bayesian approach to the direct mapping of a quantitative trait locus (QTL), fully utilizing information from multiple linked gene markers, is presented in this paper. The joint posterior distribution (a mixture distribution modeling the linkage between a biallelic QTL and N gene markers) is computationally challenging and invites exploration via Markov chain Monte Carlo methods. The parameter's complete marginal posterior densities are obtained, allowing a diverse range of inferences. Parameters estimated include the QTL genotype probabilities for the sires and the offspring, the allele frequencies for the QTL, and the position and additive and dominance effects of the QTL. The methodology is applied through simulation to a half-sib design to form an outbred pedigree structure where there is an entire class of missing information. The capacity of the technique to accurately estimate parameters is examined for a range of scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号