首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the changes in both performance and selected physiological parameters following a Live High-Train Low (LHTL) altitude camp in either normobaric hypoxia (NH) or hypobaric hypoxia (HH) replicating current “real” practices of endurance athletes. Well-trained triathletes were split into two groups (NH, n = 14 and HH, n = 13) and completed an 18-d LHTL camp during which they trained at 1100–1200 m and resided at an altitude of 2250 m (PiO2  = 121.7±1.2 vs. 121.4±0.9 mmHg) under either NH (hypoxic chamber; FiO2 15.8±0.8%) or HH (real altitude; barometric pressure 580±23 mmHg) conditions. Oxygen saturations (SpO2) were recorded continuously daily overnight. PiO2 and training loads were matched daily. Before (Pre-) and 1 day after (Post-) LHTL, blood samples, VO2max, and total haemoglobin mass (Hbmass) were measured. A 3-km running test was performed near sea level twice before, and 1, 7, and 21 days following LHTL. During LHTL, hypoxic exposure was lower for the NH group than for the HH group (220 vs. 300 h; P<0.001). Night SpO2 was higher (92.1±0.3 vs. 90.9±0.3%, P<0.001), and breathing frequency was lower in the NH group compared with the HH group (13.9±2.1 vs. 15.5±1.5 breath.min−1, P<0.05). Immediately following LHTL, similar increases in VO2max (6.1±6.8 vs. 5.2±4.8%) and Hbmass (2.6±1.9 vs. 3.4±2.1%) were observed in NH and HH groups, respectively, while 3-km performance was not improved. However, 21 days following the LHTL intervention, 3-km run time was significantly faster in the HH (3.3±3.6%; P<0.05) versus the NH (1.2±2.9%; ns) group. In conclusion, the greater degree of race performance enhancement by day 21 after an 18-d LHTL camp in the HH group was likely induced by a larger hypoxic dose. However, one cannot rule out other factors including differences in sleeping desaturations and breathing patterns, thus suggesting higher hypoxic stimuli in the HH group.  相似文献   

2.

Purpose

The present study determined the association between body fluid variation and the development of acute mountain sickness (AMS) in adults.

Methods

Forty-three healthy participants (26 males and 17 females, age: 26±6 yr, height: 174±9 cm, weight: 68±12 kg) were passively exposed at a FiO2 of 12.6% (simulated altitude hypoxia of 4500 m, PiO2 = 83.9 mmHg) for 12-h. AMS severity was assessed using the Lake Louise Score (LLS). Food and drink intakes were consumed ad libitum and measured; all urine was collected. Before and after the 12-h exposure, body weight and plasma osmolality were measured and whole-body bioimpedance analysis was performed.

Results

The overall AMS incidence was 43% (38% males, 50% females). Participants who developed AMS showed lower fluid losses (3.0±0.9 vs. 4.5±2.0 ml/kg/h, p = 0.002), a higher fluid retention (1.9±1.5 vs. 0.6±0.8 ml/kg/h, p = 0.022), greater plasma osmolality decreases (−7±7 vs. −2±5 mOsm/kg, p = 0.028) and a larger plasma volume expansion (11±10 vs. 1±15%, p = 0.041) compared to participants not developing AMS. Net water balance (fluid intake – fluid loss) and the amount of fluid loss were strong predictors whether getting sick or not (Nagelkerkes r2 = 0.532). The LLS score was related to net water balance (r = 0.358, p = 0.018), changes in plasma osmolality (r = −0.325, p = 0.033) and sodium concentration (r = −0.305, p = 0.047). Changes in the impedance vector length were related to weight changes (r = −0.550, p<0.001), fluid intake (r = −0.533, p<0.001) and net water balance (r = −0.590, p<0.001).

Conclusions

Participants developing AMS within 12 hours showed a positive net water balance due to low fluid loss. Thus measures to avoid excess fluid retention are likely to reduce AMS symptoms.  相似文献   

3.
While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min−1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min−1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare.  相似文献   

4.
Hypoxia is a common feature in children with sickle cell disease (SCD) that is inconsistently associated with painful crises and acute chest syndrome. To assess the prevalence and risk factors of hypoxia, we recorded daytime, nocturnal, and postexercise pulse oximetry (SpO2) values in 39 SCD patients with a median age of 10.8 years. Median daytime SpO2 was 97% (range, 89%–100%), and 36% of patients had daytime hypoxia defined as SpO2<96%. Median nocturnal SpO2 was 94.7% (range, 87.7%–99.5%), 50% of patients had nocturnal hypoxia defined as SpO2≤93%, and 11(37%) patients spent more than 10% of their total sleep time with SpO2<90%. Median postexercise SpO2 was 94% (range, 72%–100%) and 44.7% of patients had postexercise hypoxia defined as an SpO2 decrease ≥3% after a 6-minute walk test. Among patients with normal daytime SpO2, 35% had nocturnal and 42% postexercise hypoxia. Compared to 9 patients without daytime, nocturnal, or postexercise hypoxia, 25 patients with hypoxia under at least one of these three conditions had greater anemia severity (P = 0.01), lower HbF levels (P = 0.04), and higher aspartate aminotransferase levels (P = 0.03). Males predominated among patients with postexercise hypoxia (P = 0.004). Hypoxia correlated neither with painful crises nor with acute chest syndrome. Of 32 evaluable patients, 6 (18.8%) had a tricuspid regurgitation velocity ≥2.6 m/s, and this feature was associated with anemia (P = 0.044). Median percentage of the predicted distance covered during a 6-minute walk test was 86% [46–120]; the distance was negatively associated with LDH (P = 0.044) and with a past history of acute chest syndrome (P = 0.009). In conclusion, severe episodes of nocturnal and postexercise hypoxia are common in children with SCD, even those with normal daytime SpO2.  相似文献   

5.

Objective

We examined metabolic and endocrine responses during rest and exercise in moderate hypoxia over a 7.5 h time courses during daytime.

Methods

Eight sedentary, overweight men (28.6±0.8 kg/m2) completed four experimental trials: a rest trial in normoxia (FiO2 = 20.9%, NOR-Rest), an exercise trial in normoxia (NOR-Ex), a rest trial in hypoxia (FiO2 = 15.0%, HYP-Rest), and an exercise trial in hypoxia (HYP-Ex). Experimental trials were performed from 8:00 to 15:30 in an environmental chamber. Blood and respiratory gas samples were collected over 7.5 h. In the exercise trials, subjects performed 30 min of pedaling exercise at 60% of VO2max at 8:00, 10:30, and 13:00, and rested during the remaining period in each environment. Standard meals were provided at 8:30, 11:00, and 13:30.

Results

The areas under the curves for blood glucose and serum insulin concentrations over 7.5 h did not differ among the four trials. At baseline, %carbohydrate contribution was significantly higher in the hypoxic trials than in the normoxic trials (P<0.05). Although exercise promoted carbohydrate oxidation in the NOR-Ex and HYP-Ex trials, %carbohydrate contribution during each exercise and post-exercise period were significantly higher in the HYP-Ex trial than in the NOR-Ex trial (P<0.05).

Conclusion

Three sessions of 30 min exercise (60% of VO2max) in moderate hypoxia over 7.5 h did not attenuate postprandial glucose and insulin responses in young, overweight men. However, carbohydrate oxidation was significantly enhanced when the exercise was conducted in moderate hypoxia.  相似文献   

6.
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the ‘normal’ cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.  相似文献   

7.

Background

Each year, thousands of pilgrims travel to the Janai Purnima festival in Gosainkunda, Nepal (4380 m), ascending rapidly and often without the aid of pharmaceutical prophylaxis.

Methods

During the 2012 Janai Purnima festival, 538 subjects were recruited in Dhunche (1950 m) before ascending to Gosainkunda. Through interviews, subjects provided demographic information, ratings of AMS symptoms (Lake Louise Scores; LLS), ascent profiles, and strategies for prophylaxis.

Results

In the 491 subjects (91% follow-up rate) who were assessed upon arrival at Gosainkunda, the incidence of AMS was 34.0%. AMS was more common in females than in males (RR = 1.57; 95% CI = 1.23, 2.00), and the AMS incidence was greater in subjects >35 years compared to subjects ≤35 years (RR = 1.63; 95% CI = 1.36, 1.95). There was a greater incidence of AMS in subjects who chose to use garlic as a prophylactic compared to those who did not (RR = 1.69; 95% CI = 1.26, 2.28). Although the LLS of brothers had a moderate correlation (intraclass correlation = 0.40, p = 0.023), sibling AMS status was a weak predictor of AMS.

Conclusions

The incidence of AMS upon reaching 4380 m was 34% in a large population of Nepalese pilgrims. Sex, age, and ascent rate were significant factors in the development of AMS, and traditional Nepalese remedies were ineffective in the prevention of AMS.  相似文献   

8.
Here, we evaluated the influence of breathing oxygen at different partial pressures during recovery from exercise on performance at sea-level and a simulated altitude of 1800 m, as reflected in activation of different upper body muscles, and oxygenation of the m. triceps brachii. Ten well-trained, male endurance athletes (25.3±4.1 yrs; 179.2±4.5 cm; 74.2±3.4 kg) performed four test trials, each involving three 3-min sessions on a double-poling ergometer with 3-min intervals of recovery. One trial was conducted entirely under normoxic (No) and another under hypoxic conditions (Ho; FiO2 = 0.165). In the third and fourth trials, the exercise was performed in normoxia and hypoxia, respectively, with hyperoxic recovery (HOX; FiO2 = 1.00) in both cases. Arterial hemoglobin saturation was higher under the two HOX conditions than without HOX (p<0.05). Integrated muscle electrical activity was not influenced by the oxygen content (best d = 0.51). Furthermore, the only difference in tissue saturation index measured via near-infrared spectroscopy observed was between the recovery periods during the NoNo and HoHOX interventions (P<0.05, d = 0.93). In the case of HoHo the athletes’ Pmean declined from the first to the third interval (P < 0.05), whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions. We conclude that the less pronounced decline in Pmean during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation. Moreover, we conclude that hyperoxia (FiO2 = 1.00) used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals.  相似文献   

9.
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (∼3%) and maximal strength (1RM) (∼6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press.  相似文献   

10.
Due to the reduced physical activity of patients who have undergone total hip arthroplasty (THA), there are no home-based exercise training regimens for preventing muscle atrophy and aerobic capacity impairment in these patients. We examined whether interval walking training (IWT) could prevented these issues. Twenty-eight female patients (∼60 years of age) who had undergone THA more than 2 months prior were randomly divided into IWT (n = 14) and control (CNT, n = 14) groups. The IWT subjects trained at a target of 60 min of fast walking at >70% peak aerobic capacity for walking (O2peak) per wk for 12 wk, while those in the CNT maintained their previous sedentary life during the same period. We measured the energy expenditure of the daily physical activity, except during sleeping and bathing, every minute and every day during the intervention. We also measured the isometric knee extension (FEXT) and flexion (FFLX) forces, O2peak, and anaerobic threshold during the graded cycling exercise (O2AT) before and after the intervention. All subjects, except for one in IWT, completed the protocol. FFLX increased by 23% on the operated side (P = 0.003) and 14% on the non-operated side of IWT (P = 0.006), while it only increased on the operated side of CNT (P = 0.03). The O2peak and O2AT in IWT increased by 8% (P = 0.08) and 13% (P = 0.002), respectively, and these changes were significantly higher in the IWT than in CNT group (both, P<0.05). In conclusion, IWT might be an effective home-based training regimen for preventing the muscle atrophy from reduced daily physical activity in THA patients.

Trial Registration

UMIN-CTR UMIN000013172  相似文献   

11.

Background

In Olympic combat sports, weight cutting is a common practice aimed to take advantage of competing in weight divisions below the athlete''s normal weight. Fluid and food restriction in combination with dehydration (sauna and/or exercise induced profuse sweating) are common weight cut methods. However, the resultant hypohydration could adversely affect health and performance outcomes.

Purpose

The aim of this study is to determine which of the routinely used non-invasive measures of dehydration best track urine osmolality, the gold standard non-invasive test.

Method

Immediately prior to the official weigh-in of three National Championships, the hydration status of 345 athletes of Olympic combat sports (i.e., taekwondo, boxing and wrestling) was determined using five separate techniques: i) urine osmolality (UOSM), ii) urine specific gravity (USG), iii) urine color (UCOL), iv) bioelectrical impedance analysis (BIA), and v) thirst perception scale (TPS). All techniques were correlated with UOSM divided into three groups: euhydrated (G1; UOSM 250–700 mOsm·kg H2O−1), dehydrated (G2; UOSM 701–1080 mOsm·kg H2O−1), and severely dehydrated (G3; UOSM 1081–1500 mOsm·kg H2O−1).

Results

We found a positive high correlation between the UOSM and USG (r = 0.89: p = 0.000), although this relationship lost strength as dehydration increased (G1 r = 0.92; G2 r = 0.73; and G3 r = 0.65; p = 0.000). UCOL showed a moderate although significant correlation when considering the whole sample (r = 0.743: p = 0.000) and G1 (r = 0.702: p = 0.000) but low correlation for the two dehydrated groups (r = 0.498–0.398). TPS and BIA showed very low correlation sizes for all groups assessed.

Conclusion

In a wide range of pre-competitive hydration status (UOSM 250–1500 mOsm·kg H2O−1), USG is highly associated with UOSM while being a more affordable and easy to use technique. UCOL is a suitable tool when USG is not available. However, BIA or TPS are not sensitive enough to detect hypohydration at official weight-in before an Olympic combat championship.  相似文献   

12.
A. assamensis is a phytophagous Lepidoptera from Northeast India reared on host trees of Lauraceae family for its characteristic cocoon silk. Source of these cocoons are domesticated farm stocks that crash frequently and/or wild insect populations that provide new cultures. The need to reduce dependence on wild populations for cocoons necessitates assessment of genetic diversity in cultivated and wild populations. Molecular markers based on PCR of Inter-simple sequence repeats (ISSR) and simple sequence repeats (SSR) were used with four populations of wild insects and eleven populations of cultivated insects. Wild populations had high genetic diversity estimates (Hi = 0.25; HS = 0.28; HE = 0.42) and at least one population contained private alleles. Both marker systems indicated that genetic variability within populations examined was significantly high. Among cultivated populations, insects of the Upper Assam region (Hi = 0.19; HS = 0.18; HE = 0) were genetically distinct (F ST = 0.38 with both marker systems) from insects of Lower Assam (Hi = 0.24; HS = 0.25; HE = 0.3). Sequencing of polymorphic amplicons suggested transposition as a mechanism for maintaining genomic diversity. Implications for conservation of native populations in the wild and preserving in-farm diversity are discussed.  相似文献   

13.
Intrapulmonary arteriovenous anastomoses (IPAVs) are large diameter connections that allow blood to bypass the lung capillaries and may provide a route for right-to-left embolus transmission. These anastomoses are recruited by exercise and catecholamines and hypoxia. Yet, whether IPAVs are recruited via direct, oxygen sensitive regulatory mechanisms or indirect effects secondary to redistribution pulmonary blood flow is unknown. Here, we hypothesized that the addition of exercise to hypoxic gas breathing, which increases cardiac output, would augment IPAVs recruitment in healthy humans. To test this hypothesis, we measured the transpulmonary passage of 99mTc-macroaggregated albumin particles (99mTc-MAA) in seven healthy volunteers, at rest and with exercise at 85% of volitional max, with normoxic (FIO2 = 0.21) and hypoxic (FIO2 = 0.10) gas breathing. We found increased 99mTc-MAA passage in both exercise conditions and resting hypoxia. However, contrary to our hypothesis, we found the greatest 99mTc-MAA passage with resting hypoxia. As an additional, secondary endpoint, we also noted that the transpulmonary passage of 99mTc-MAA was well-correlated with the alveolar-arterial oxygen difference (A-aDO2) during exercise. While increased cardiac output has been proposed as an important modulator of IPAVs recruitment, we provide evidence that the modulation of blood flow through these pathways is more complex and that increasing cardiac output does not necessarily increase IPAVs recruitment. As we discuss, our data suggest that the resistance downstream of IPAVs is an important determinant of their perfusion.  相似文献   

14.
BackgroundThere has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses.ResultsAll 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S’, lateral S’, tricuspid S’ and A’ velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A’ was higher with GHA compared with NH at 15 minutes post exercise.ConclusionsGHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function.  相似文献   

15.
No non-invasive test exists for forearm exercise that allows identification of power-time relationship parameters (W′, critical power) and thereby identification of the heavy-severe exercise intensity boundary and scaling of aerobic metabolic exercise intensity. The aim of this study was to develop a maximal effort handgrip exercise test to estimate forearm critical force (fCF; force analog of power) and establish its repeatability and validity. Ten healthy males (20–43 years) completed two maximal effort rhythmic handgrip exercise tests (repeated maximal voluntary contractions (MVC); 1 s contraction-2 s relaxation for 600 s) on separate days. Exercise intensity was quantified via peak contraction force and contraction impulse. There was no systematic difference between test 1 and 2 for fCFpeak force (p = 0.11) or fCFimpulse (p = 0.76). Typical error was small for both fCFpeak force (15.3 N, 5.5%) and fCFimpulse (15.7 N⋅s, 6.8%), and test re-test correlations were strong (fCFpeak force, r = 0.91, ICC = 0.94, p<0.01; fCFimpulse, r = 0.92, ICC = 0.95, p<0.01). Seven of ten subjects also completed time-to-exhaustion tests (TTE) at target contraction force equal to 10%<fCFpeak force and 10%>fCFpeak force. TTE predicted by W′ showed good agreement with actual TTE during the TTE tests (r = 0.97, ICC = 0.97, P<0.01; typical error 0.98 min, 12%; regression fit slope = 0.99 and y intercept not different from 0, p = 0.31). MVC did not predict fCFpeak force (p = 0.37), fCFimpulse (p = 0.49) or W′ (p = 0.15). In conclusion, the poor relationship between MVC and fCF or W′ illustrates the serious limitation of MVC in identifying metabolism-based exercise intensity zones. The maximal effort handgrip exercise test provides repeatable and valid estimates of fCF and should be used to normalize forearm aerobic metabolic exercise intensity instead of MVC.  相似文献   

16.

Background

Risk prediction of acute mountain sickness, high altitude (HA) pulmonary or cerebral edema is currently based on clinical assessment. Our objective was to develop a risk prediction score of Severe High Altitude Illness (SHAI) combining clinical and physiological factors. Study population was 1017 sea-level subjects who performed a hypoxia exercise test before a stay at HA. The outcome was the occurrence of SHAI during HA exposure. Two scores were built, according to the presence (PRE, n = 537) or absence (ABS, n = 480) of previous experience at HA, using multivariate logistic regression. Calibration was evaluated by Hosmer-Lemeshow chisquare test and discrimination by Area Under ROC Curve (AUC) and Net Reclassification Index (NRI).

Results

The score was a linear combination of history of SHAI, ventilatory and cardiac response to hypoxia at exercise, speed of ascent, desaturation during hypoxic exercise, history of migraine, geographical location, female sex, age under 46 and regular physical activity. In the PRE/ABS groups, the score ranged from 0 to 12/10, a cut-off of 5/5.5 gave a sensitivity of 87%/87% and a specificity of 82%/73%. Adding physiological variables via the hypoxic exercise test improved the discrimination ability of the models: AUC increased by 7% to 0.91 (95%CI: 0.87–0.93) and 17% to 0.89 (95%CI: 0.85–0.91), NRI was 30% and 54% in the PRE and ABS groups respectively. A score computed with ten clinical, environmental and physiological factors accurately predicted the risk of SHAI in a large cohort of sea-level residents visiting HA regions.  相似文献   

17.
In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10−5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function.  相似文献   

18.
A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/−4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.  相似文献   

19.

Background

In experimental conditions alveolar fluid clearance is controlled by alveolar β2-adrenergic receptors. We hypothesized that if this occurs in humans, then non-selective β-blockers should reduce the membrane diffusing capacity (DM), an index of lung interstitial fluid homeostasis. Moreover, we wondered whether this effect is potentiated by saline solution infusion, an intervention expected to cause interstitial lung edema. Since fluid retention within the lungs might trigger excessive ventilation during exercise, we also hypothesized that after the β2-blockade ventilation increased in excess to CO2 output and this was further enhanced by interstitial edema.

Methods and Results

22 healthy males took part in the study. On day 1, spirometry, lung diffusion for carbon monoxide (DLCO) including its subcomponents DM and capillary volume (VCap), and cardiopulmonary exercise test were performed. On day 2, these tests were repeated after rapid 25 ml/kg saline infusion. Then, in random order 11 subjects were assigned to oral treatment with Carvedilol (CARV) and 11 to Bisoprolol (BISOPR). When heart rate fell at least by 10 beats·min−1, the tests were repeated before (day 3) and after saline infusion (day 4). CARV but not BISOPR, decreased DM (−13±7%, p = 0.001) and increased VCap (+20±22%, p = 0.016) and VE/VCO2 slope (+12±8%, p<0.01). These changes further increased after saline: −18±13% for DM (p<0.01), +44±28% for VCap (p<0.001), and +20±10% for VE/VCO2 slope (p<0.001).

Conclusions

These findings support the hypothesis that in humans in vivo the β2-alveolar receptors contribute to control alveolar fluid clearance and that interstitial lung fluid may trigger exercise hyperventilation.  相似文献   

20.

Purpose

To assess the dose-response relationships between cause-specific mortality and exercise energy expenditure in a prospective epidemiological cohort of walkers.

Methods

The sample consisted of the 8,436 male and 33,586 female participants of the National Walkers'' Health Study. Walking energy expenditure was calculated in metabolic equivalents (METs, 1 MET = 3.5 ml O2/kg/min), which were used to divide the cohort into four exercise categories: category 1 (≤1.07 MET-hours/d), category 2 (1.07 to 1.8 MET-hours/d), category 3 (1.8 to 3.6 MET-hours/d), and category 4 (≥3.6 MET-hours/d). Competing risk regression analyses were use to calculate the risk of mortality for categories 2, 3 and 4 relative to category 1.

Results

22.9% of the subjects were in category 1, 16.1% in category 2, 33.3% in category 3, and 27.7% in category 4. There were 2,448 deaths during the 9.6 average years of follow-up. Total mortality was 11.2% lower in category 2 (P = 0.04), 32.4% lower in category 3 (P<10−12) and 32.9% lower in category 4 (P = 10−11) than in category 1. For underlying causes of death, the respective risk reductions for categories 2, 3 and 4 were 23.6% (P = 0.008), 35.2% (P<10−5), and 34.9% (P = 0.0001) for cardiovascular disease mortality; 27.8% (P = 0.18), 20.6% (P = 0.07), and 31.4% (P = 0.009) for ischemic heart disease mortality; and 39.4% (P = 0.18), 63.8% (P = 0.005), and 90.6% (P = 0.002) for diabetes mortality when compared to category 1. For all related mortality (i.e., underlying and contributing causes of death combined), the respective risk reductions for categories 2, 3 and 4 were 18.7% (P = 0.22), 42.5% (P = 0.001), and 57.5% (P = 0.0001) for heart failure; 9.4% (P = 0.56), 44.3% (P = 0.0004), and 33.5% (P = 0.02) for hypertensive diseases; 11.5% (P = 0.38), 41.0% (P<10−4), and 35.5% (P = 0.001) for dysrhythmias: and 23.2% (P = 0.13), 45.8% (P = 0.0002), and 41.1% (P = 0.005) for cerebrovascular diseases when compared to category 1.

Conclusions

There are substantial health benefits to exceeding the current exercise guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号