共查询到20条相似文献,搜索用时 8 毫秒
1.
《Channels (Austin, Tex.)》2013,7(4):262-271
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels. 相似文献
2.
We have investigated the effect of high hydrostatic pressure on MscS, the bacterial mechanosensitive channel of small conductance. Pressure affected channel kinetics but not conductance. At negative pipette voltages (corresponding to membrane depolarization in the inside-out patch configuration used in our experiments) the channel exhibited a reversible reduction in activity with increasing hydrostatic pressure between 0 and 900 atm (90 MPa) at 23°C. The reduced activity was characterized by a significant reduction in the channel opening probability resulting from a shortening of the channel openings with increasing pressure. Thus high hydrostatic pressure generally favoured channel closing. Cooling the patch by approximately 10°C, intended to order the bilayer component of the patch by an amount similar to that caused by 50 MPa at 23°C, had relatively little effect. This implies that pressure does not affect channel kinetics via bilayer order. Accordingly we postulate that lateral compression of the bilayer, under high hydrostatic pressure, is responsible. These observations also have implications for our understanding of the adaptation of mechanosensitive channels in deep-sea bacteria.A Proceeding of the 28th Annual Meeting of the Australian Society for Biophysics. 相似文献
3.
Annette C. Hurst Philip A. Gottlieb Boris Martinac 《European biophysics journal : EBJ》2009,38(4):415-425
The spider peptide GsMTx4, at saturating concentration of 5 μM, is an effective and specific inhibitor for stretch-activated
mechanosensitive (MS) channels found in a variety of eukaryotic cells. Although the structure of the peptide has been solved,
the mode of action remains to be determined. Because of its amphipathic structure, the peptide is proposed to interact with
lipids at the boundaries of the MS channel proteins. In addition, GsMTx4 has antimicrobial effects, inhibiting growth of several
species of bacteria in the range of 5–64 μM. Previous studies on prokaryotic MS channels, which serve as model systems to
explore the principle of MS channel gating, have shown that various amphipathic compounds acting at the protein–lipid interface
affect MS channel gating. We have therefore analyzed the effect of different concentrations of extracellular GsMTx4 on MS
channels of small conductance, MscS and MscK, in the cytoplasmic membrane of wild-type E. coli spheroplasts using the patch-clamp technique. Our study shows that the peptide GsMTx4 exhibits a biphasic response in which
peptide concentration determines inhibition or potentiation of activity in prokaryotic MS channels. At low peptide concentrations
of 2 and 4 μM the gating of the prokaryotic MS channels was hampered, manifested by a decrease in pressure sensitivity. In
contrast, application of peptide at concentrations of 12 and 20 μM facilitated prokaryotic MS channel opening by increasing
the pressure sensitivity. 相似文献
4.
Adrienne C. Scheck Joseph V. Landau 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1982,698(2):149-157
The pressure response of two eukaryotic protein synthesizing systems has been characterized. The rabbit reticulocyte system has been tested, both in vivo and in vitro, using endogenous polysomes and polyuridylic acid (poly U). In addition, the poly U-directed polyphenylalanine synthesizing system obtained from wheat germ was utilized. The effect of pressure on eukaryotic protein synthesis has been found to be basically similar to that observed in prokaryotic systems, although the response of the eukaryotic protein synthesizing system is somewhat more complex signifying a greater influence of overlapping reactions. Magnesium was found to affect eukaryotic systems in much the same way as has been reported for prokaryotic systems, i.e., increasing the Mg2+ concentration in a protein synthesizing system increases the barotolerance exhibited by that system. Under conditions of high Mg2+ concentration, however, extreme (up to 160%) stimulation of protein synthesis at lower pressure levels was observed in the eukaryotic systems. Such high stimulation is not apparent in prokaryotic systems. The poly U-directed wheat germ system exhibited the most barotolerant polypeptide synthesis ever seen in our laboratory. This extreme barotolerance was only slightly decreased when the system was tested at reduced concentrations of magnesium. 相似文献
5.
Subsampling technique for measuring growth of bacterial cultures under high hydrostatic pressure. 下载免费PDF全文
A method is presented for measuring growth of bacteria under high hydrostatic pressure in subsamples taken without pressure change in the incubation vessel. Subsamples may be withdrawn rapidly (5 s) and are not subjected to shear forces. Vice versa, nutrient media, labeled substrates, etc., may be introduced into the culture while under pressure. Chemical fixation of subsamples for electron microscopy or adenosine 5'-triphosphate determinations under pressure is also possible without affecting the growing culture. Data are given of growth experiments demonstrating the feasibility of the method. Problems of oxygen depletion are discussed. 相似文献
6.
Jens T. Kaiser Douglas C. Rees 《Protein science : a publication of the Protein Society》2013,22(4):502-509
The mechanosensitive channel of small conductance (MscS) contributes to the survival of bacteria during osmotic downshock by transiently opening large diameter pores for the efflux of cellular contents before the membrane ruptures. Two crystal structures of the Escherichia coli MscS are currently available, the wild type protein in a nonconducting state at 3.7 Å resolution (Bass et al., Science 2002; 298:1582–1587) and the Ala106Val variant in an open state at 3.45 Å resolution (Wang et al., Science 2008; 321:1179–1183). Both structures used protein solubilized in the detergent fos‐choline‐14. We report here crystal structures of MscS from E. coli and Helicobacter pylori solubilized in the detergent β‐dodecylmaltoside at resolutions of 4.4 and 4.2 Å, respectively. While the cytoplasmic domains are unchanged in these structures, distinct conformations of the transmembrane domains are observed. Intriguingly, β‐dodecylmaltoside solubilized wild type E. coli MscS adopts the open state structure of A106V E. coli MscS, while H. pylori MscS resembles the nonconducting state structure observed for fos‐choline‐14 solubilized E. coli MscS. These results highlight the sensitivity of membrane protein conformational equilibria to variations in detergent, crystallization conditions, and protein sequence. 相似文献
7.
8.
The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes 总被引:2,自引:0,他引:2
The effect of high hydrostatic pressure (100–550 MPa, 15 min, ambient temperature) on the activity of 13 metabolic enzymes produced by all three strains of Listeria monocytogenes (NCTC 11994, a poultry isolate and Scott A) was examined using gel electrophoresis. The enzymes assayed exhibited a wide variation in barotolerance. The pressure resistance of each particular enzyme was not dependent on the strain from which it was derived. This would seem to indicate that these enzymes were not a determining factor in relation to previously observed differences in the overall pressure resistance of the three strains. 相似文献
9.
G Prat-Gay A Paladini M Stein R A Wolosiuk 《The Journal of biological chemistry》1991,266(31):20913-20921
High hydrostatic pressure enhanced the specific activity of regulatory enzymes of the Benson-Calvin cycle (fructose-1,6-bisphosphatase, glyceraldehyde-3-P dehydrogenase, phosphoribulokinase) which are modulated by the ferredoxin-thioredoxin system. High activity of chloroplast fructose-1,6-bisphosphatase required dithiothreitol, fructose 1,6-bisphosphate, and Ca2+. At 100 bar the A0.5 for fructose 1,6-bisphosphate (0.3 mM) was lower than that at 1 bar (1.5 mM), whereas similar variations of pressure did not alter the A0.5 for Ca2+ (55 microM). The response of chloroplast glyceraldehyde-3-P dehydrogenase exposed to 500 bar was a 4-fold increase in the NADP-linked activity; conversely, the NAD-dependent activity remained unchanged. The concerted action of high pressure and Pi (or ATP), both activators of chloroplast glyceraldehyde-3-P dehydrogenase, led to inactivation. On the other hand, the activity of phosphoribulokinase increased 10-fold when the enzyme was incubated at 1500 bar; the activation process was strictly dependent on the presence of dithiothreitol. At variance with these enzymes, bovine liver fructose-1,6-bisphosphatase, yeast glyceraldehyde-3-P dehydrogenase, and chloroplast ribulose 1,5-bisphosphate carboxylase, whose activities are not modulated by reduced thioredoxin, were inactivated by high pressure. The comparison of oligomeric enzymes revealed that the stimulation of specific activity by high pressure correlated with thioredoxin-mediated activation, and it did not depend on a particular subunit composition. Present results show that high pressure resembled thioredoxin, cosolvents, and chaotropic anions in its action on regulatory enzymes of the Benson-Calvin cycle. The comparison of physiological and non-physiological modulators suggested that thioredoxin-mediated modifications of noncovalent interactions is an important event in light-dependent regulation of chloroplast enzymes. 相似文献
10.
The effect of high hydrostatic pressure on Salmonella thompson and Listeria monocytogenes examined by electron microscopy 总被引:3,自引:0,他引:3
B.M. Mackey K. Forestière N.S. Isaacs R. Stenning B. Brooker 《Letters in applied microbiology》1994,19(6):429-432
Cells of Listeria monocytogenes that had been exposed to pressure contained vacuolar regions in the cytoplasm. Pressure-treated cells of Salmonella thompson contained no vacuoles but had fewer ribosomes than untreated cells and their appearance suggested that some cell lysis had occurred. In both organisms changes in the appearance of the nuclear material were observed. 相似文献
11.
LDH and GOT can be used with assurance as indicators of pressure-temperature effects in most regions of interest, specifically below 20,000 psi. LDH was susceptible to pressure deactivation at pressure levels below those tolerated by chymotrypsin, trypsin and alpha-amylase of Bacillus subtilis (17, 18, 20). Samples of LDH and GOT cooled to −20 °C were deactivated to the greatest extent by the application of pressure. The presence of glycerine and DMSO appeared to increase the sensitivity of GOT and LDH to pressure deactivation. When pressure was applied before cooling all pressures above 15,000 psi resulted in some deactivation of LDH and all pressures above 20,000 psi resulted in some deactivation of GOT. 相似文献
12.
A network of cytoplasmic microtubules in PE cells disassembles at 37 degrees C under 1000 atm pr. in 12 to 14 hours; under 2000 atm pr., the disassembly time is not more than 2 hours. The reconstitution process sets in 20 minutes after pressure dropping to proceed diffusely throughout the cytoplasm. Microtubules attached to the cell center reappear in 45 minutes. The dynamics of microtubular disassembly and reconstitution indicates a complete inactivation of the cell center as a microtubule-organizing center. 相似文献
13.
Three strains of Listeria monocytogenes (NCTC 11994, a poultry isolate and the Scott A strain) were exposed to a range of pressures (300, 350, 375, 400 and 450 MPa) in 10 mmol l−1 phosphate-buffered saline (PBS) at pH 7·0 for up to 30 min at ambient temperature. Generally, increasing the magnitude and duration of compression resulted in increasing levels of inactivation, although the inactivation kinetics varied depending on the strain and pressure applied. The three strains also exhibited a wide variation in their resistance to high pressure. The resistance of the three strains to high pressure (375 MPa) was also assessed in a series of model food systems containing one of each of the three main food constituents: protein (1, 2, 5 and 8% w/v bovine serum albumin in PBS), carbohydrate (1, 2, 5 and 10% w/v glucose in PBS) and lipid (olive oil (30% v/v) in PBS emulsion). Overall, increasing the concentrations of bovine serum albumin (BSA) and glucose in the suspending medium resulted in decreasing levels of inactivation of all three strains; however, the minimum concentration of BSA and glucose required to increase survival to a level greater than that observed in PBS alone varied depending on the strain and on the duration of the treatment. The survival of all three strains was greater in the olive oil/PBS emulsion than in PBS alone at all treatment times. 相似文献
14.
C.W.S. Cheung I.B. Beech S.A. Campbell J. Satherley D.J. Schiffrin 《International biodeterioration & biodegradation》1994,33(4)
This study was undertaken to determine the influence of temperature (20, 37, and 50°C) and pressure (1, 100 and 200 atm) on a strain of sulphate-reducing bacteria (SRB), isolated from an oil reservoir in Alaska. The effect of different concentrations (100, 200 and 500 ppm) of biocides isothiazolone (ITZ) and formaldehyde (FA) on planktonic population of SRB was tested in order to determine the efficacy of biocides under these conditions.The highest bacterial growth rate was 0.26±0.03 h−1 at 37°C under pressure of 100 atm. Statistical evaluation showed that although both temperature and pressure had exerted an effect on bacteria by significantly increasing their growth rate; temperature rather than pressure had greater influence on bacterial proliferation.The effectiveness of both FA and ITZ in controlling planktonic populations of SRB was comparable except at 37°C/200 atm, under which conditions FA proved to be more potent. The effectiveness of both biocides decreased with an increase in cell number, as observed at 37°C/100 atm. 相似文献
15.
16.
DNA hairpins consist of two distinct structural domains: a double stranded stem and a single-stranded loop that connect the two strands of the stem. Previous studies of short DNA hairpins have revealed that loop and stem sequences can significantly affect the thermodynamic stability of short DNA hairpins. In this work we present the effect of hydrostatic pressure on the helix-coil transition temperature (TM) for 11 16-base, hairpin-forming DNA oligonucleotides. All of the samples form a hairpin with a 6-base pair stem and a four-base loop. In addition, the four base pairs at the end of the stem distal from the loop are the same for every molecule. We have varied loop sequence and identity of the two duplex base pairs adjacent to the loop. Using the change in UV absorption to monitor the conformational state of the oligonucleotide the hairpin-coil transition temperature of these molecules was studied as a function of sodium ion concentration and pressure. From these data we calculated the volume change accompanying the transition. Model-dependent (van't Hoff) transition parameters such as ΔHvH and transition volume (ΔV) were estimated from the analysis of conformational transitions. Experiments revealed that the ΔV for denaturation of these molecules range from − 2.35 to + 6.74 cm3 mol−1. The expansibility (ΔΔV/ΔT) and the pressure dependence of cation release are also presented. The difference in the volume change for this transition is related to the differences in the hydration of these molecules. 相似文献
17.
18.
Investigation of the effect of high hydrostatic pressure on proteins and lipidic membranes by dynamic fluorescence spectroscopy 总被引:2,自引:0,他引:2
Dynamic fluorescence spectroscopy brings new insight into the functional and structural changes of biological molecules under moderate and high hydrostatic pressure. The principles of time-resolved fluorescence methods are briefly described and the resulting type of information is summarized. A first set of selected applications of the use of dynamic fluorescence on pressure effects on proteins in terms of denaturation, ternary and quaternary structure, aggregation and also interaction with DNA are presented. A second set of applications is devoted to the effect of pressure and of cholesterol on lateral heterogeneity of lipidic membranes. 相似文献
19.
The objective of this study was to combine pressure (345 MPa) with heat (50 C), and bacteriocins (5000 AU/ml sample) for a short time (5 min) for the inactivation of relatively pressure-resistant strains of four foodborne pathogens: Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella in pasteurized milk and orange juice. Without bacteriocin addition, 5.5 log-cycle reduction was obtained for S. aureus 485 in milk whereas more than 8 log-cycle reduction was achieved for all the other strains studied. After storage of samples for 24 h at 4 C, S. aureus 765 also gave positive results on selective media, where no growth was observed for all the other micro-organisms assayed. Incubation of the same pressurized samples at 37 C for 48 h showed growth of L. monocytogenes strains in addition to S. aureus strains, where still no growth was observed for E. coli O157:H7 and Salmonella strains in their respective selective media. For orange juice samples, more than 8 log-cycle reduction was achieved for all the bacterial species studied. No growth was seen for these species on their respective selective media agar plates after storage at 4 C for 24 h and at 37 C for 48 h. When a bacteriocin-based biopreservative (BP1) was combined with pressurization, more than 8 log-cycle reduction in cell population of the resistant strains of S. aureus and L. monocytogenes were achieved in milk after pressurization. Milk samples were stored at 25 C up to 30 days to test the effect of treatment and samples showed no growth whereas all the controls were positive. 相似文献