首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo studies have shown many discrepancies regarding the immunomodulatory properties of MSCs. These studies have been designed to test the efficacy of MSC therapy in two different immune settings: the prevention or treatment of allograft rejection episodes, and the ability to suppress abnormal immune response in autoimmune and inflammatory diseases. Preclinical studies have been conducted in rodents, rabbits and baboon monkeys among others for bone marrow, skin, heart, and corneal transplantation, graft versus host disease, hepatic and renal failure, lung injury, multiple sclerosis, rheumatoid arthritis, diabetes and lupus diseases. Preliminary results from some of these studies have led to human clinical trials that are currently being carried out. These include treatment of autoimmune diseases such as Crohn's disease, ulcerative colitis, multiple sclerosis and type 1 diabetes mellitus; prevention of allograft rejection and enhancement of the survival of bone marrow and kidney grafts; and treatment of resistant graft versus host disease. We will try to shed light on all these studies, and analyze why the results are so contradictory.  相似文献   

2.
Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.  相似文献   

3.
Systemic application of mesenchymal stromal cells (MSCs) in inflammatory cardiomyopathy exerts cardiobeneficial effects. The mode of action is unclear since a sufficient and long-acting cardiac homing of MSCs is unlikely. We therefore investigated the regulation of the immune response in coxsackievirus B3 (CVB3)-induced acute myocarditis after intravenous application of MSCs. Wildtype mice were infected with CVB3 and treated with either PBS, human MSCs or human cardiac fibroblasts intravenously 1 day after infection. Seven days after infection, MSCs could be detected in the spleen, heart, pancreas, liver, lung and kidney, whereby the highest presence was observed in the lung. MSCs increased significantly the myocardial expression of HGF and decreased the expression of the proinflammatory cytokines TNFα, IL1β and IL6 as well as the severity of myocarditis and ameliorated the left ventricular dysfunction measured by conductance catheter. MSCs upregulated the production of IFNγ in CD4+ and CD8+ cells, the number of IL10-producing regulatory T cells and the apoptosis rate of T cells in the spleen. An increased number of CD4+CD25+FoxP3 could be found in the spleen as well as in the circulation. In contrast, application of human cardiac fibroblasts had no effect on the severity of myocarditis and the systemic immune response observed after MSCs-administration. In conclusion, modulation of the immune response in extracardiac organs is associated with cardiobeneficial effects in experimental inflammatory cardiomyopathy after systemic application of MSCs.  相似文献   

4.
Vitamin D receptor (VDR) ligands, in addition to controlling calcium metabolism, exert important effects on the growth and differentiation of many cell types and possess pronounced pro-tolerogenic immunoregulatory activities. VDR ligands can act directly on T cells, but antigen-presenting cells (APCs), and in particular dendritic cells (DCs), appear to be primary targets for their tolerogenic properties. The capacity of VDR ligands to target APCs and T cells is mediated by VDR expression in both cell types and by the presence of common targets in their signal transduction pathways, such as the nuclear factor NF-kB that is down-regulated in APCs and in T cells. VDR ligands can induce in vitro and in vivo tolerogenic DCs able to enhance CD4(+)CD25(+) suppressor T cells that, in turn, inhibit Th1 cell responses. These mechanisms of action can explain some of the immunoregulatory properties of VDR ligands, and are potentially relevant for the treatment of Th1-mediated autoimmune diseases and allograft rejection.  相似文献   

5.
Hepatocyte growth factor (HGF) plays an important role in many biological events such as angiogenesis, cell proliferation, anti-fibrosis and antiapoptosis. It is well known that HGF promotes tumor progression and suppresses development of fibrosis after tissue injury. In contrast, its role in immune-mediated disorders has not been fully clarified. In the present study, we examined the role of HGF in Ag-specific immune response using in vitro studies and an experimental model of allergic airway inflammation. We first confirmed that dendritic cells (DCs) expressed the receptor for HGF, c-met, which was not expressed in T cells. Treatment with HGF both in vitro and in vivo potently suppressed DC functions such as Ag-presenting capacity, thus down-regulating Ag-induced Th1- and Th2-type immune responses. Exogenous administration of the HGF expression plasmid into Ag-primed mice markedly suppressed the development of airway eosinophilia and airway hyperresponsiveness, which was induced by Ag inhalation, with suppression of the Ag-presenting capacity of DCs in the lung. HGF exhibited these immunosuppressive effects without up-regulation of IL-10 or TGF-beta. We also found that expression of endogenous HGF in the lung significantly increased following Ag sensitization and inhalation challenges. Finally, neutralization of endogenous HGF in vivo significantly increased airway eosinophilia and airway hyperresponsiveness with up-regulation of the Ag-presenting capacity of DCs in the lung. These results demonstrated a novel, significant, and possibly therapeutic role of HGF as a potent regulator in immune-mediated disorders such as asthma.  相似文献   

6.
Recent studies using mouse models demonstrate that CD4(+) T cells are sufficient to mediate acute cardiac allograft rejection in the absence of CD8(+) T cells and B cells. However, the mechanistic basis of CD4-mediated rejection is unclear. One potential mechanism of CD4-mediated rejection is via elaboration of proinflammatory cytokines such as IFN-gamma. To determine whether IFN-gamma is a critical cytokine in CD4-mediated acute cardiac allograft rejection, we studied whether the expression of IFN-gamma receptors on the donor heart was required for CD4-mediated rejection. To investigate this possibility, purified CD4(+) T cells were transferred into immune-deficient mice bearing heterotopic cardiac allografts from IFN-gamma receptor-deficient (GRKO) donors. While CD4(+) T cells triggered acute rejection of wild-type heart allografts, they failed to trigger rejection of GRKO heart allografts. The impairment in CD4-mediated rejection of GRKO hearts appeared to primarily involve the efferent phase of the immune response. This conclusion was based on the findings that GRKO stimulator cells provoked normal CD4 proliferation in vitro and that intentional in vivo challenge of CD4 cells with wild-type donor APC or the adoptive transfer of in vitro primed CD4 T cells failed to provoke acute rejection of GRKO allografts. In contrast, unseparated lymph node cells acutely rejected both GRKO and wild-type hearts with similar time courses, illustrating the existence of both IFN-gamma-dependent and IFN-gamma-independent mechanisms of acute allograft rejection.  相似文献   

7.
Hepatocyte growth factor (HGF) plays an important role in angiogenesis, cell proliferation, antifibrosis, and antiapoptosis. Moreover, recent studies have highlighted the immunosuppressive effect of HGF in animal models of allogenic heart transplantation and autoimmune myocarditis and in studies in vitro as well. We also reported that HGF significantly suppresses dendritic cell function, thus down-regulating Ag-induced Th1-type and Th2-type immune responses in allergic airway inflammation. However, the immunosuppressive effect of HGF in many other situations has not been fully clarified. In the present study, using a mouse model of collagen-induced arthritis (CIA) and experiments in vitro, we examined the effect of HGF on autoimmune arthritis and then elucidated the mechanisms of action of HGF. To achieve sufficient delivery of HGF, we used biodegradable gelatin hydrogels as a carrier. HGF suppressed Ag-induced T cell priming by regulating the functions of dendritic cells in the Ag-sensitization phase with down-regulation of IL-10. In contrast, under continuous Ag stimulation HGF induced IL-10-producing immunocytes both in vivo and in vitro. Moreover, HGF potently inhibited the development of CIA with enhancing the Th2-type immune response. We also confirmed that HGF significantly suppressed the production of IL-17 by immunocytes. These results indicate that HGF suppresses the development of CIA through different ways at different phases. They also suggest that HGF could be an attractive tool for treating patients with rheumatoid arthritis.  相似文献   

8.
The role of immune response to tissue-specific Ags in transplant rejection is poorly defined. We have previously reported that transplantation of cardiac allografts triggers a CD4(+) Th1 cell response to cardiac myosin (CM), a major contractile protein of the heart, and that pretransplant activation of proinflammatory CM-specific T cells accelerates rejection. In this study, we show that administration of CM together with IFA (CM/IFA) can prevent acute rejection of an allogeneic heart transplant. Prolongation of cardiac graft survival is associated with activation of CM- and allo-specific T cells secreting type 2 cytokines (IL-4, IL-5) and reduction of the frequency of proinflammatory IFN-gamma-secreting (type 1) alloreactive T cells. Blocking of IL-4 cytokine with Abs abrogates the prolongation. CM/IFA treatment prevents acute rejection of MHC class I-mismatched, but not fully mismatched grafts. However, if donor heart is devoid of MHC class II expression, CM-IFA administration delays rejection of fully allogeneic cardiac transplants. This finding suggests that the effect of CM modulation depends on the type (direct vs indirect) and strength of recipient's CD4(+) T cell alloresponse. Our results underscore the important role of host immunity to tissue-specific Ags in the rejection of an allograft. This study demonstrates that modulation of the immune response to a tissue-specific Ag can significantly prolong cardiac allograft survival, an observation that may have important implications for the development of novel selective immune therapies in transplantation.  相似文献   

9.
Mesenchymal stem cells (MSCs) are suggested to be immune modulators because of their therapeutic potential in transplantation. In the present study, we evaluated the therapeutic potential of autologous MSCs for preventing graft rejection after allogeneic rat islet transplantation. We assessed the ability of MSCs to elicit an antiproliferative response in alloreactive lymphocytes and tested the immunosuppressive effect of MSCs in allogeneic islet transplantation. In islet allotransplantation, injection of autologous MSCs or a subtherapeutic dose of cyclosporine A (CsA; 5 mg/kg) alone did not prolong allograft survival. However, graft survival was attained for >100 d in 33% of autologous MSC-plus-CsA-treated recipients, indicating that graft acceptance was achieved in a subgroup of allograft recipients. Splenocytes from autologous MSC-plus-CsA-treated rats exhibited a reduced mixed lymphocyte reaction (MLR)-proliferative response to donor stimulators and increased interleukin (IL)-10 release. Interestingly, after excluding host CD11b(+) cells, splenic T cells from autologous MSC-plus-CsA-treated rats did not produce IL-10 or did not inhibit proliferative responses under the same conditions. The use of autologous MSC-plus-CsA downregulated immune responses, inducing donor-specific T-cell hyporesponsiveness by reducing the production of proinflammatory cytokines and inducing antiinflammatory cytokine production, especially that of IL-10, during the early posttransplantation period. T-regulatory cells made a contribution at a later phase. In conclusion, the combined use of autologous MSCs and low-dose CsA exerted a synergistic immunosuppressive effect in an islet allograft model, suggesting a role for autologous MSCs as an immune modulator.  相似文献   

10.
Bone marrow‐derived mesenchymal stem cells (BM‐MSCs ) transplantation has been reported to be a promising therapy for myocardial infarction (MI). However, low survival rate of BM‐MSCs in infarcted heart is one of the major limitations for the perspective clinical application. In this study, we aimed to investigate the effect of hepatocyte growth factor (HGF) on left ventricular function improvement of HGF gene‐modified BM‐MSCs (HGF‐MSCs) after its delivery into the infarcted rat hearts. BM‐MSCs were isolated with fibroblast‐like morphology and expressed CD44+CD29+CD90+/CD34‐CD45‐CD31‐CD11a. After 5‐azacytidine induction in vitro, 20%–30% of the cells were positively stained for desmin, cardiac‐specific cardiac troponin I and connexin‐43. Histological staining revealed that 2 weeks after MI is an optimal time point with decreased neutrophil infiltration and increased vascular number. Minimal infarct size and best haemodynamic analysis were also observed after cell injection at 2 weeks compared with that of 1 h, 1 week or 4 weeks. Echocardiogram confirmed that transplantation with HGF‐MSCs significantly improved left ventricular function compared with other groups in rat MI models. MSCs and HGF‐MSCslabelled with DAPI were detected 4 weeks after MI in the infarcted area. Decreased infarcted scar area and increased angiogenesis formation could be found in HGF‐MSCs group than in other groups as demonstrated by hematoxylin and eosin (H&E) staining and factor VIII staining. These results indicate that HGF‐MSCs transplantation could enhance the contractile function and attenuate left ventricular remodelling efficiently in rats with MI. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Hepatocyte growth factor (HGF) signaling via the MET receptor is essential for embryonic development and tissue repair. On the other hand, deregulated MET signaling promotes tumor progression in diverse types of cancers. Even though oncogenic MET signaling remains the major research focus, the HGF–MET axis has also been implicated in diverse aspects of immune cell development and functions. In the presence of other hematopoietic growth factors, HGF promotes the development of erythroid, myeloid and lymphoid lineage cells and thrombocytes. In monocytes and macrophages responding to inflammatory stimuli, induction of autocrine HGF–MET signaling can contribute to tissue repair via stimulating anti-inflammatory cytokine production. HGF–MET signaling can also modulate adaptive immune response by facilitating the migration of Langerhans cells and dendritic cells to draining lymph nodes. However, MET signaling has also been shown to induce tolerogenic dendritic cells in mouse models of graft-versus-host disease and experimental autoimmune encephalomyelitis. HGF–MET axis is also implicated in promoting thymopoiesis and the survival and migration of B lymphocytes. Recent studies have shown that MET signaling induces cardiotropism in activated T lymphocytes. Further understanding of the HGF–MET axis in the immune system would allow its therapeutic manipulation to improve immune cell reconstitution, restore immune homeostasis and to treat immuno-inflammatory diseases.  相似文献   

12.
Dimethyl fumarate (DMF) is an important oral treatment option for various autoimmune diseases, such as multiple sclerosis (MS) and psoriasis. DMF and its dynamic metabolite, monomethyl fumarate (MMF) are the major compounds that exert therapeutic effects on several pathologic conditions in part, through downregulation of immune responses. The exact mechanism of DMF is yet to be fully understood even though its beneficial effects on the immune system are extensively studied. It has been shown that DMF/MMF can affect various immune cells, which can get involved in both the naive and adaptive immune systems, such as T cells, B cells, dendritic cells, macrophages, neutrophils, and natural killer cells. It is suggested that DMF/MMF may exert their effect on immune cells through inhibition of nuclear factor-κB translocation, upregulation of nuclear factor erythroid-derived 2(E2)-related factor antioxidant pathway, and activation of hydroxyl carboxylic acid receptor 2. In this review, the mechanisms underlying the modulatory functions of DMF or MMF on the main immune cell populations involved in the immunopathogenesis of MS are discussed.  相似文献   

13.
In recent years, a large number of studies have contributed to our understanding of the immunomodulatory mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM), MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for prevalent clinical use of these versatile adult stem cells in the near future.  相似文献   

14.
Programmed death-1 targeting can promote allograft survival   总被引:19,自引:0,他引:19  
The recently identified CD28 homolog and costimulatory molecule programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2, which are homologs of B7, constitute an inhibitory regulatory pathway of potential therapeutic use in immune-mediated diseases. We examined the expression and functions of PD-1 and its ligands in experimental cardiac allograft rejection. In initial studies, we found that most normal tissues and cardiac isografts had minimal expression of PD-1, PD-L1, or PD-L2, but intragraft induction of all three molecules occurred during development of cardiac allograft rejection. Intragraft expression of all three genes was maintained despite therapy with cyclosporin A or rapamycin, but was prevented in the early posttransplant period by costimulation blockade using CD154 or anti-inducible costimulator mAb. We prepared PD-L1.Ig and PD-L2.Ig fusion proteins and showed that each bound to activated PD-1(+) T cells and inhibited T cell functions in vitro, thereby allowing us to test the effects of PD-1 targeting on allograft survival in vivo. Neither agent alone modulated allograft rejection in wild-type recipients. However, use of PD-L1.Ig administration in CD28(-/-) recipients, or in conjunction with immunosuppression in fully MHC-disparate combinations, markedly prolonged cardiac allograft survival, in some cases causing permanent engraftment, and was accompanied by reduced intragraft expression of IFN-gamma and IFN-gamma-induced chemokines. PD-L1.Ig use also prevented development of transplant arteriosclerosis post-CD154 mAb therapy. These data show that when combined with limited immunosuppression, or in the context of submaximal TCR or costimulatory signals, targeting of PD-1 can block allograft rejection and modulate T and B cell-dependent pathologic immune responses in vivo.  相似文献   

15.
白细胞介素2亲和性配体的筛选   总被引:3,自引:0,他引:3  
白细胞介素2(IL-2)及其受体拮抗剂的研究对免疫抑制药物的研制具有重要作用.抗白细胞介素2受体α链中和性单克隆抗体5G1(抗Tac型抗体)能够特异性地阻断IL-2与其受体的结合.因此,5G1可作为目标分子被用来在噬菌体展示肽库中筛选白细胞介素2的亲和性配体.经过4轮亲和性筛选以及5G1亲和活性的测定,6个具有明显5G1亲和活性的噬菌体克隆被发现.DNA序列分析结果显示出,所得到的肽序列具有明显的保守性,即SSFT(L/P)I.该序列与IL-2受体α链没有同源性.因此,SSFT(L/P)I可能模拟了IL-2受体α链上的一个不连续表位(mimotope),为白细胞介素2亲和性配体片段.  相似文献   

16.
Mesenchymal stem cell (MSC) therapy is considered a new treatment for a wide range of diseases and injuries, but challenges remain, such as poor survival, homing and engraftment rates, thus limiting the therapeutic efficacy of the transplanted MSCs. Many strategies have been developed to enhance the therapeutic efficacy of MSCs, such as preconditioning, co‐transplantation with graft materials and gene modification. Hepatocyte growth factor (HGF) is secreted by MSCs, which plays an important role in MSC therapy. It has been reported that the modification of the HGF gene is beneficial to the therapeutic efficacy of MSCs, including diseases of the heart, lung, liver, urinary system, bone and skin, lower limb ischaemia and immune‐related diseases. This review focused on studies involving HGF/MSCs both in vitro and in vivo. The characteristics of HGF/MSCs were summarized, and the mechanisms of their improved therapeutic efficacy were analysed. Furthermore, some insights are provided for HGF/MSCs'' clinical application based on our understanding of the HGF gene and MSC therapy.  相似文献   

17.
Decay-accelerating factor (DAF) is a cell surface regulator that accelerates the dissociation of C3/C5 convertases and thereby prevents the amplification of complement activation on self cells. In the context of transplantation, DAF has been thought to primarily regulate antibody-mediated allograft injury, which is in part serum complement-dependent. Based on our previously delineated link between DAF and CD4 T cell responses, we evaluated the effects of donor Daf1 (the murine homolog of human DAF) deficiency on CD8 T cell-mediated cardiac allograft rejection. MHC-disparate Daf1(-/-) allografts were rejected with accelerated kinetics compared with wild-type grafts. The accelerated rejection predominantly tracked with DAF's absence on bone marrow-derived cells in the graft and required allograft production of C3. Transplantation of Daf1(-/-) hearts into wild-type allogeneic hosts augmented the strength of the anti-donor (direct pathway) T cell response, in part through complement-dependent proliferative and pro-survival effects on alloreactive CD8 T cells. The accelerated allograft rejection of Daf1(-/-) hearts occurred in recipients lacking anti-donor Abs. The results reveal that donor DAF expression, by controlling local complement activation on interacting T cell APC partners, regulates the strength of the direct alloreactive CD8(+) T cell response. The findings provide new insights into links between innate and adaptive immunity that could be exploited to limit T cell-mediated injury to an allograft following transplantation.  相似文献   

18.
Protein kinase C (PKC)-theta mediates the critical TCR signals required for T cell activation. Previously, we have shown that in response to TCR stimulation, PKC-theta-/- T cells undergo apoptosis due to greatly reduced levels of the anti-apoptotic molecule, Bcl-xL. In this study, we demonstrate that PKC-theta-regulated expression of Bcl-xL is essential for T cell-mediated cardiac allograft rejection. Rag1-/- mice reconstituted with wild-type T cells readily rejected fully mismatched cardiac allografts, whereas Rag1-/- mice reconstituted with PKC-theta-/- T cells failed to promote rejection. Transgenic expression of Bcl-xL in PKC-theta-/- T cells was sufficient to restore cardiac allograft rejection, suggesting that PKC-theta-regulated survival is required for T cell-mediated cardiac allograft rejection in this adoptive transfer model. In contrast to adoptive transfer experiments, intact PKC-theta-/- mice displayed delayed, but successful cardiac allograft rejection, suggesting the potential compensation for PKC-theta function. Finally, a subtherapeutic dose of anti-CD154 Ab or CTLA4-Ig, which was not sufficient to prevent cardiac allograft rejection in the wild-type mice, prevented heart rejection in the PKC-theta-/- mice. Thus, in combination with other treatments, inhibition of PKC-theta may facilitate achieving long-term survival of allografts.  相似文献   

19.
Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA) therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1) reduced the frequency of activated T cells in secondary lymphoid organs; (2) shifted post-transplant cytokines towards a Th2 phenotype; and (3) prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use "direct" host T cell therapy for prolongation of allograft viability as an alternative to "indirect" therapy mediated by donor T cell infusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号