共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Lateral fluid-percussion brain injury in rats results in cognitive deficits, motor dysfunction, and selective hippocampal cell loss. Neurotrophic factors have been shown to have potential therapeutic applications in neurodegenerative diseases, and nerve growth factor (NGF) has been shown to be neuroprotective in models of excitotoxicity. This study evaluated the neuroprotective efficacy of intracerebral NGF infusion after traumatic brain injury. Male Sprague-Dawley rats received lateral fluid-percussion brain injury of moderate severity (2.1–2.3 atm). A miniosmotic pump was implanted 24 h after injury to infuse NGF (n = 34) or vehicle (n = 16) directly into the region of maximal cortical injury. Infusions of NGF continued until the animal was killed at 72 h, 1 week, or 2 weeks after injury. Animals were evaluated for cognitive dysfunction (Morris Water Maze) and regional neuronal cell loss (Nissl staining) at each of the three time points. Animals surviving for 1 or 2 weeks were also evaluated for neurobehavioral motor function. Although an improvement in memory scores was not observed at 72 h after injury, animals receiving NGF infusions showed significantly improved memory scores when tested at 1 or 2 weeks after injury compared with injured animals receiving vehicle infusions ( p < 0.05). Motor scores and CA3 hippocampal cell loss were not significantly different in any group of NGF-treated animals when compared with controls. These data suggest that NGF administration, in the acute, posttraumatic period following fluid-percussion brain injury, may have potential in improving post-traumatic cognitive deficits. 相似文献
2.
目的建立大潮气量致急性肺损伤(ALI)犬呼吸机相关性肺损伤(VILI)模型。方法健康雄性杂种犬12只用油酸静脉注射法制备犬ALI模型,造模成功后进行支持通气15min过渡,然后随机分为VILI组及对照组行机械通气6 h,每组6只。VILI组潮气量(Vt)=20 mL/kg,对照组Vt=6 mL/kg,两组呼气末正压(PEEP)均为10 cmH2O。动态观察各组血气交换指标变化。通气6 h后取支气管肺泡灌洗液(BALF)作白蛋白浓度检查,取肺组织作病理切片肺损伤评分。结果各组在油酸静脉注射后(2.50±0.80)h达到ALI标准。VILI组在犬机械通气6 h后PaO2、SaO2及氧合指数(OI)较对照组略下降(P〈0.05),而PaCO2波动不大,且心率、血压波动也较对照组小(P〈0.05)。VILI组BALF中蛋白浓度和肺组织损伤评分均较对照组显著升高(分别P〈0.05,P〈0.01)。结论本实验成功建立了大潮气量致ALI犬VILI模型。 相似文献
3.
Miquéias Lopes-Pacheco Túlio G. Ventura Helena D'Anuncia??o de Oliveira Leonardo C. Mon??o-Ribeiro Bianca Gutfilen Sergio A. L. de Souza Patrícia R. M. Rocco Radovan Borojevic Marcelo M. Morales Christina M. Takiya 《PloS one》2014,9(10)
We hypothesized that infusion of bone marrow mononuclear cells (BMMCs) in the late stages of silica-induced damage would reduce the remodelling process in a murine model of silicosis. C57BL/6 mice were assigned to 2 groups. In the SIL group, mice were instilled with a silica particle suspension intratracheally. Control (C) mice received saline under the same protocol. On the 40th day, some of the animals from both groups were killed. The others were treated with either saline or BMMCs (1×106cells) intravenously (C+BMMC and SIL+BMMC), and the mice were killed 70 days after the start of the protocol. In the mice in the SIL+BMMC group, collagen deposition, the presence of silica particles inside nodules, the presence of macrophages and cells reactive for inducible nitric oxide synthase were reduced. Lung parameters also improved. Beyond that, the total and differential cellularity of bronchoalveolar lavage fluid, immunoexpression of transforming growth factor-β, the number of T regulatory cells and apoptosis were increased. However, the presence of male donor cells in lung tissue was not observed using GFP+ cells (40d) or Y chromosome DNA (70d). Therefore, BMMC therapy in the late stages of experimental silicosis improved lung function by diminishing fibrosis but inflammatory cells persisted, which could be related to expansion of T regulatory cells, responsible for the beneficial effects of cell therapy. 相似文献
4.
5.
Nikhil Mulchandani Weng-Lang Yang Mohammad Moshahid Khan Fangming Zhang Philippe Marambaud Jeffrey Nicastro Gene F Coppa Ping Wang 《Molecular medicine (Cambridge, Mass.)》2015,21(1):637-644
Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. 相似文献
6.
Judith Marlene Roth David K?hler Mariella Schneider Tiago Folgosa Granja Peter Rosenberger 《PloS one》2016,11(1)
The extent of pulmonary inflammation during lung injury ultimately determines patient outcome. Pulmonary inflammation is initiated by the migration of neutrophils into the alveolar space. Recent work has demonstrated that the guidance protein semaphorin 7A (SEMA7A) influences the migration of neutrophils into hypoxic tissue sites, yet, its role during lung injury is not well understood. Here, we report that the expression of SEMA7A is induced in vitro through pro-inflammatory cytokines. SEMA7A itself induces the production of pro-inflammatory cytokines in endothelial and epithelial cells, enhancing pulmonary inflammation. The induction of SEMA7A facilitates the transendothelial migration of neutrophils. In vivo, animals with deletion of SEMA7A expression showed reduced signs of pulmonary inflammatory changes following lipopolysaccharide challenge. We define here the role of SEMA7A in the development of lung injury and identify a potential pathway to interfere with these detrimental changes. Future anti-inflammatory strategies for the treatment of lung injury might be based on this finding. 相似文献
7.
Jorrit J. Hofstra Alexander D. Cornet Paul J. Declerck Barry Dixon Hamid Aslami Alexander P. J. Vlaar Joris J. Roelofs Tom van der Poll Marcel Levi Marcus J. Schultz 《PloS one》2013,8(2)
Background
Critically ill patients frequently develop acute lung injury (ALI). Disturbed alveolar fibrin turnover, a characteristic feature of ALI, is the result of both activation of coagulation and inhibition of fibrinolysis. Nebulized fibrinolytic agents could exert lung–protective effects, via promotion of fibrinolysis as well as anti–inflammation.Methods
Rats were challenged intratracheally with Pseudomonas aeruginosa, resulting in pneumonia as a model for direct ALI, or received an intravenous bolus infusion of lipopolysaccharide, as a model for indirect ALI. Rats were randomized to nebulization of normal saline (placebo), recombinant tissue plasminogen activator (rtPA), or monoclonal antibodies against plasminogen activator inhibitor–type 1 (anti–PAI–1).Results
Nebulized rtPA or anti–PA1–1 enhanced the bronchoalveolar fibrinolytic system, as reflected by a significant reduction of PAI–1 activity levels in bronchoalveolar lavage fluid, and a consequent increase in plasminogen activator activity (PAA) levels to supranormal values. Both treatments also significantly affected systemic fibrinolysis as reflected by a significant increase in PAA levels in plasma to supranormal levels. Neither nebulized rtPA nor anti–PA1–1 affected pulmonary inflammation. Neither treatment affected bacterial clearance of P. aeruginosa from the lungs in case of pneumonia.Conclusions
Local treatment with rtPA or anti–PA1–1 affects pulmonary fibrinolysis but not inflammation in models of direct or indirect ALI in rats. 相似文献8.
Nisreen Soufi Angela M. Hall Zhouji Chen Jun Yoshino Sara L. Collier James C. Mathews Elizabeth M. Brunt Carolyn J. Albert Mark J. Graham David A. Ford Brian N. Finck 《The Journal of biological chemistry》2014,289(43):30177-30188
Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury. 相似文献
9.
目的 探讨热休克因子1 (HSF1)减轻脓毒症凝血功能障碍,保护小鼠急性肺损伤的机制。方法 本研究采用盲肠结扎穿孔术(cecal ligation and puncture,CLP)制备脓毒症小鼠模型,检测凝血相关指标和观察小鼠肺部病理变化,通过酶联免疫吸附实验(ELISA)、q RT-PCR和蛋白质印迹法(Western blot)等方法检测蛋白质C表达水平,通过质粒转染抑制或增强HSF1表达从而观察蛋白质C表达水平的变化,并利用生物信息学、凝胶电泳迁移实验(EMSA)和双荧光素酶报告基因实验探讨HSF1调节蛋白质C转录的机制。结果 在CLP脓毒症小鼠模型中,HSF-/-组小鼠的凝血活性与HSF1+/+组相比明显增强,肺损伤明显加重。ELISA、qRT-PCR和Western blot检测发现,HSF-/-脓毒症小鼠血浆和肺组织中的蛋白质C表达水平显著低于野生型小鼠。体外bEnd.3血管内皮细胞的实验结果显示,HSF1抑制脂多糖(LPS)诱导的蛋白质C表达,HSF1过表达则增强蛋白质C表达。生物信息学数据分析提示,蛋白质C启动子区含有HSF... 相似文献
10.
Leonardo C. M. ávila Thayse R. Bruggemann Franciane Bobinski Morgana Duarte da Silva Regiane Carvalho Oliveira Daniel Fernandes Martins Leidiane Mazzardo-Martins Marta Maria Medeiros Frescura Duarte Luiz Felipe de Souza Alcir Dafre Rodolfo de Paula Vieira Adair Roberto Soares Santos Kelly Cattelan Bonorino Deborah de C. Hizume Kunzler 《PloS one》2015,10(9)
Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL—10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung inflammation in mice. 相似文献
11.
Ken Murakami Masataka Kohno Masatoshi Kadoya Hidetake Nagahara Wataru Fujii Takahiro Seno Aihiro Yamamoto Ryo Oda Hiroyoshi Fujiwara Toshikazu Kubo Satoshi Morita Hiroshi Nakada Timothy Hla Yutaka Kawahito 《PloS one》2014,9(9)
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein–coupled receptors (S1P1–5). Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO)) mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT) mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF) collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF) levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1) or transforming growth factor β1 (TGF-β1) levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis. 相似文献
12.
Elisabetta Traggiai Anna Casati Michela Frascoli Simona Porcellini Maurilio Ponzoni Francesca Sanvito Lin Leng Richard Bucala Lorenzo Moretta Fabio Grassi 《PloS one》2010,5(6)
Inflammation promotes granulopoiesis over B lymphopoiesis in the bone marrow (BM). We studied B cell homeostasis in two murine models of T cell mediated chronic inflammation, namely calreticulin-deficient fetal liver chimeras (FLC), which develop severe blepharitis and alopecia due to T cell hyper responsiveness, and inflammatory bowel disease (IBD) caused by injection of CD4+ naïve T cells into lymphopenic mice. We show herein that despite the severe depletion of B cell progenitors during chronic, peripheral T cell-mediated inflammation, the population of BM mature recirculating B cells is unaffected. These B cells are poised to differentiate to plasma cells in response to blood borne pathogens, in an analogous fashion to non-recirculating marginal zone (MZ) B cells in the spleen. MZ B cells nevertheless differentiate more efficiently to plasma cells upon polyclonal stimulation by Toll-like receptor (TLR) ligands, and are depleted during chronic T cell mediated inflammation in vivo. The preservation of mature B cells in the BM is associated with increased concentration of macrophage migration inhibitory factor (MIF) in serum and BM plasma. MIF produced by perivascular dendritic cells (DC) in the BM provides a crucial survival signal for recirculating B cells, and mice treated with a MIF inhibitor during inflammation showed significantly reduced mature B cells in the BM. These data indicate that MIF secretion by perivascular DC may promote the survival of the recirculating B cell pool to ensure responsiveness to blood borne microbes despite loss of the MZ B cell pool that accompanies depressed lymphopoiesis during inflammation. 相似文献
13.
Abdul Mannan Baru Venkateswaran Ganesh Jayendra Kumar Krishnaswamy Christina Hesse Christopher Untucht Silke Glage Georg Behrens Christian Thomas Mayer Franz Puttur Tim Sparwasser 《PloS one》2012,7(10)
Regulatory T cells (Tregs) play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC)-transgenic Foxp3-DTR (DEREG) mice we demonstrate that the absence of Foxp3+ Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3+ Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics. 相似文献
14.
Jie Chen Hongquan Peng Long Xiao Kun Zhang Zhimin Yuan Jianping Chen Zhiyu Wang Jingfeng Wang Hui Huang 《PloS one》2013,8(12)
Malnutrition is associated with increased risk of mortality in hemodialysis patients. And insufficient dietary intake is the common cause for malnutrition. So, in order to survey the dietary intake of hemodialysis patients and study the relationship between the dietary feature and nutritional status, a cross-sectional study was performed. 75 hemodialysis patients from South China participated in the dietary intake survey and nutrition assessment. A three-day diet diary record was used to estimate the major dietary macronutrients. Nutritional status was assessed by malnutrition-inflammation score (MIS) in addition to several related anthropometric measurements. Serum albumin, transferrin, and high-sensitivity C-reactive protein (CRP) were measured. Receiver operating characteristic (ROC) curve analysis was used to quantify the assessing value of independent parameters for nutritional status. The results showed that 48% patients were malnourished according to the MIS. The malnourished patients had a lower body mass index (BMI), fat mass (FM), albumin and a higher level of CRP, compared with normal nourished patients (P < 0.05). However, no significant differences of macronutrients (calories, protein, fat, carbohydrates, etc) were found between the two nutrition groups (P > 0.05). The multivariate regression analysis showed that the major macronutrients had no significant association with MIS (P > 0.05). In conclusion, malnutrition is very common in South China hemodialysis population and these data indicated that inflammation but not dietary macronutrients insufficiency might be the candidate cause for malnutrition in hemodialysis population. 相似文献
15.
Samantha K. Barton Timothy J. M. Moss Stuart B. Hooper Kelly J. Crossley Andrew W. Gill Martin Kluckow Valerie Zahra Flora Y. Wong Gerhard Pichler Robert Galinsky Suzanne L. Miller Mary Tolcos Graeme R. Polglase 《PloS one》2014,9(11)
Background
The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response.Methods
Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury.Results
LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups.Conclusions
Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis. 相似文献16.
Steffen Franz Mareva Ciatipis Kathrin Pfeifer Birthe Kierdorf Beatrice Sandner Ulrich Bogdahn Armin Blesch Beate Winner Norbert Weidner 《PloS one》2014,9(7)
After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement. 相似文献
17.
Jing Wang Francis Gigliotti Samir P. Bhagwat Thaddeus C. George Terry W. Wright 《PLoS pathogens》2010,6(8)
Although T cells are critical for host defense against respiratory fungal infections, they also contribute to the immunopathogenesis of Pneumocystis pneumonia (PcP). However, the precise downstream effector mechanisms by which T cells mediate these diverse processes are undefined. In the current study the effects of immune modulation with sulfasalazine were evaluated in a mouse model of PcP-related Immune Reconstitution Inflammatory Syndrome (PcP-IRIS). Recovery of T cell-mediated immunity in Pneumocystis-infected immunodeficient mice restored host defense, but also initiated the marked pulmonary inflammation and severe pulmonary function deficits characteristic of IRIS. Sulfasalazine produced a profound attenuation of IRIS, with the unexpected consequence of accelerated fungal clearance. To determine whether macrophage phagocytosis is an effector mechanism of T cell-mediated Pneumocystis clearance and whether sulfasalazine enhances clearance by altering alveolar macrophage phagocytic activity, a novel multispectral imaging flow cytometer-based method was developed to quantify the phagocytosis of Pneumocystis in vivo. Following immune reconstitution, alveolar macrophages from PcP-IRIS mice exhibited a dramatic increase in their ability to actively phagocytose Pneumocystis. Increased phagocytosis correlated temporally with fungal clearance, and required the presence of CD4+ T cells. Sulfasalazine accelerated the onset of the CD4+ T cell-dependent alveolar macrophage phagocytic response in PcP-IRIS mice, resulting in enhanced fungal clearance. Furthermore, sulfasalazine promoted a TH2-polarized cytokine environment in the lung, and sulfasalazine-enhanced phagocytosis of Pneumocystis was associated with an alternatively activated alveolar macrophage phenotype. These results provide evidence that macrophage phagocytosis is an important in vivo effector mechanism for T cell-mediated Pneumocystis clearance, and that macrophage phenotype can be altered to enhance phagocytosis without exacerbating inflammation. Immune modulation can diminish pulmonary inflammation while preserving host defense, and has therapeutic potential for the treatment of PcP-related immunopathogenesis. 相似文献
18.
Béatrice Jacquelin Ga?l Petitjean Désirée Kunkel Anne-Sophie Liovat Simon P. Jochems Kenneth A. Rogers Micka?l J. Ploquin Yoann Madec Fran?oise Barré-Sinoussi Nathalie Dereuddre-Bosquet Pierre Lebon Roger Le Grand Fran?ois Villinger Michaela Müller-Trutwin 《PLoS pathogens》2014,10(7)
Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products. 相似文献
19.
Gregory Spear Kristina Rothaeulser Linda Fritts Patrick M. Gillevet Christopher J. Miller 《PloS one》2012,7(12)
Vaginal inoculation of rhesus macaques (RM) with simian immunodeficiency virus (SIV) has been used to study the biology of HIV transmission. Although the results of vaginal SIV transmission experiments could be affected by vaginal inflammation, studies to date have been conducted without regard to levels of pre-existing genital inflammation present in RM. We collected cevicovaginal secretions (CVS) from 33–36 RM during the mid menstrual cycle (day 10–20) at 2 time points approximately 8 months apart and characterized the mRNA and protein levels of inflammatory cytokines, chemokines and interferon-stimulated genes. There was extreme variability in the levels of inflammatory mediators (IFN-α, IFN-γ, IL-6, TNF, IL-1b, IP-10, MIG, IL-12 and IL-17). In most animals, the mRNA levels of the inflammatory mediators were similar in the 2 CVS samples collected 8 months apart, suggesting that genital inflammation is stable in a subset of captive female RM. At both time points the cervicovaginal microbiota had low levels of Lactobacillus and was relatively diverse with an average of 13 genera in the samples from the first time point (median 13, range 7–21) and an average of 11.5 genera in the samples from the second time point (median 11, range 5–20). Many of the macaques had similar microbiota in the samples collected 8 months apart. However, we found no correlation between specific bacterial genera and the mRNA or protein levels of the inflammatory mediators in the genital tract of RM in this study. It seems likely that results of published vaginal SIV transmission experiments in RM have been influenced by pre-existing inflammation in the animals used for the experiments. 相似文献
20.
Macrophage Infiltration, but Not Apoptosis, Is Correlated with Immune-Mediated Demyelination following Murine Infection with a Neurotropic Coronavirus 下载免费PDF全文
Mice infected with mouse hepatitis virus strain JHM (MHV-JHM) develop a chronic demyelinating encephalomyelitis that is in large part immune mediated. Potential mechanisms of immune activity were assessed using an adoptive transfer system. Mice deficient in recombinase-activating gene function (RAG1(-/-)), defective in B- and T-cell maturation, become persistently infected with MHV but do not develop demyelination. Adoptive transfer of splenocytes from mice immunized to MHV into RAG1(-/-) mice infected with an attenuated strain of the virus results in the rapid and progressive development of demyelination. Most striking, adoptive transfer resulted, within 5 to 6 days, in extensive recruitment of activated macrophages/microglia to sites of demyelination within the spinal cord. Clearance of virus antigen occurred preferentially from the gray matter of the spinal cord. Apoptotic cells were identified in both the gray and white matter of the central nervous system (CNS) from RAG1(-/-) mice before and after adoptive transfer, with a moderate increase in number, but not distribution, of apoptotic cells following the development of demyelination. These results suggest that apoptosis following MHV-JHM infection of the murine CNS is not sufficient to cause demyelination. These results, showing that macrophage recruitment and myelin destruction occur rapidly after immune reconstitution of RAG(-/-) mice, suggest that this will be a useful system for investigating MHV-induced demyelination. 相似文献