首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibronectin, a 250-kDa eukaryotic extracellular matrix protein containing an RGD motif plays crucial roles in cell-cell communication, development, tissue homeostasis, and disease development. The highly complex fibrillar fibronectin meshwork orchestrates the functions of other extracellular matrix proteins, promoting cell adhesion, migration, and intracellular signaling. Here, we demonstrate that CagL, a 26-kDa protein of the gastric pathogen and type I carcinogen Helicobacter pylori, mimics fibronectin in various cellular functions. Like fibronectin, CagL contains a RGD motif and is located on the surface of the bacterial type IV secretion pili as previously shown. CagL binds to the integrin receptor α5β1 and mediates the injection of virulence factors into host target cells. We show that purified CagL alone can directly trigger intracellular signaling pathways upon contact with mammalian cells and can complement the spreading defect of fibronectin−/− knock-out cells in vitro. During interaction with various human and mouse cell lines, CagL mimics fibronectin in triggering cell spreading, focal adhesion formation, and activation of several tyrosine kinases in an RGD-dependent manner. Among the activated factors are the nonreceptor tyrosine kinases focal adhesion kinase and Src but also the epidermal growth factor receptor and epidermal growth factor receptor family member Her3/ErbB3. Interestingly, fibronectin activates a similar range of tyrosine kinases but not Her3/ErbB3. These findings suggest that the bacterial protein CagL not only exhibits functional mimicry with fibronectin but is also capable of activating fibronectin-independent signaling events. We thus postulate that CagL may contribute directly to H. pylori pathogenesis by promoting aberrant signaling cross-talk within host cells.  相似文献   

2.
Signaling by the B cell receptor (BCR) promotes integrin-mediated adhesion and cytoskeletal reorganization. This results in B cell spreading, which enhances the ability of B cells to bind antigens and become activated. Proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK) are related cytoplasmic tyrosine kinases that regulate cell adhesion, cell morphology, and cell migration. In this report we show that BCR signaling and integrin signaling collaborate to induce the phosphorylation of Pyk2 and FAK on key tyrosine residues, a modification that increases the kinase activity of Pyk2 and FAK. Activation of the Rap GTPases is critical for BCR-induced integrin activation as well as for BCR- and integrin-induced reorganization of the actin cytoskeleton. We now show that Rap activation is essential for BCR-induced phosphorylation of Pyk2 and for integrin-induced phosphorylation of Pyk2 and FAK. Moreover Rap-dependent phosphorylation of Pyk2 and FAK required an intact actin cytoskeleton as well as actin dynamics, suggesting that Rap regulates Pyk2 and FAK via its effects on the actin cytoskeleton. Importantly B cell spreading induced by BCR/integrin co-stimulation or by integrin engagement was inhibited by short hairpin RNA-mediated knockdown of either Pyk2 or FAK expression and by treatment with PF-431396, a chemical inhibitor that blocks the kinase activities of both Pyk2 and FAK. Thus Pyk2 and FAK are downstream targets of the Rap GTPases that play a key role in regulating B cell morphology.Antibodies (Abs)2 made by B lymphocytes play a critical role in host defense against infection. Antigen-induced signaling by the B cell receptor (BCR) initiates an activation program that leads to B cell proliferation and subsequent differentiation into Ab-producing cells. BCR clustering by antigens or by anti-immunoglobulin (anti-Ig) Abs used as surrogate antigens initiates multiple signaling pathways that control gene expression, cell survival, and proliferation pathways (13).BCR signaling also promotes integrin activation (4, 5), localized actin polymerization, reorganization of the actin cytoskeleton, and changes in B cell morphology (6, 7), all of which may facilitate B cell activation. Integrin activation and cell spreading is critical for the activation of B cells by membrane-bound antigens. Macrophages, dendritic cells, and follicular dendritic cells can present arrays of captured antigens to B cells (8, 9), and this may be one of the main ways in which B cells encounter antigens (10). BCR-induced integrin activation prolongs the interaction between the B cell and the antigen-presenting cell and also allows the B cell to spread on the surface of the antigen-presenting cell such that more BCRs can encounter and bind membrane-bound antigens (11). Subsequent contraction of the B cell membrane allows the B cells to gather the BCR-bound antigen into an immune synapse in which clustered antigen-engaged BCRs are surrounded by a ring of ligand-bound integrins. Formation of this immune synapse reduces the amount of antigen that is required for B cell activation (12, 13).Recent work has shown that B cells in lymphoid organs may contact soluble antigens by extending membrane processes into a highly organized network of lymph-filled conduits (14). These conduits are created by fibroblastic reticular cells that partially ensheathe collagen fibrils. In addition to being rich in collagen, fibronectin, and other extracellular matrix (ECM) components, the fibroblastic reticular cells that form these conduits express high levels of intercellular adhesion molecule-1, the ligand for the αLβ2 integrin (lymphocyte function-associated antigen-1 (LFA-1)) on B cells (10). Thus B cells interacting with these conduits are likely to be in contact with integrin ligands, and integrin-dependent spreading may enhance the ability of B cells to extend membrane processes into the fibroblastic reticular cell conduit.In addition to promoting cell spreading, integrins can act as co-stimulatory receptors that enhance signaling by many receptors including the T cell receptor and the BCR (1517). Thus signaling proteins that regulate B cell spreading and that are also targets of BCR/integrin co-stimulation may play a key role in the activation of B cells by membrane-bound antigens as well as soluble antigens that are delivered to lymphoid organs by fibroblastic reticular cell conduits.Proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK) are related non-receptor protein-tyrosine kinases that integrate signals from multiple receptors and play an important role in regulating cell adhesion, cell morphology, and cell migration in many cell types (1820). Integrins, receptor tyrosine kinases, antigen receptors, and G protein-coupled chemokine receptors all stimulate tyrosine phosphorylation of Pyk2 and FAK, a modification that increases the enzymatic activity of these kinases and allows them to bind SH2 domain-containing signaling proteins (21). FAK, which is expressed in almost all tissues (21), is a focal adhesion component that mediates integrin-dependent cell migration (22), cell spreading, and cell adhesion (18) in adherent cells as well as co-clustering of LFA-1 with the T cell receptor in lymphocytes (23). Pyk2 is expressed mainly in hematopoietic cells, osteoclasts, and the central nervous system (24) and is critical for chemokine-induced migration of B cells, macrophages, and natural killer cells (20, 25, 26) as well as the spreading of osteoclasts on vitronectin (27). FAK and Pyk2 are thought to mediate overlapping but distinct functions because Pyk2 expression only partially reverses the cell adhesion and migration defects in FAK-deficient fibroblasts (28).In B cells, clustering of the BCR, β1 integrins, or β7 integrins induces tyrosine phosphorylation of both Pyk2 and FAK (2933). FAK is involved in the chemokine-induced adhesion of B cell progenitors (34), and Pyk2 is required for chemokine-induced migration of mature B cells (25). However, the role of these kinases in BCR- and integrin-induced B cell spreading has not been investigated, and the signaling pathways that link the BCR and integrins to tyrosine phosphorylation of Pyk2 and FAK have not been elucidated.We have shown previously that the ability of the BCR to induce integrin activation, B cell spreading, and immune synapse formation requires activation of the Rap GTPases (6, 17). In addition to binding effector proteins such as RapL and Rap1-interacting adaptor molecule (RIAM) that promote integrin activation (3537), the active GTP-bound forms of Rap1 and Rap2 bind multiple proteins that control actin dynamics and cell morphology (38). Moreover we showed that BCR/integrin-induced phosphorylation of Pyk2 in B cells is dependent on Rap activation (17). However, this previous study did not address how Rap-GTP links the BCR and integrins to Pyk2 phosphorylation, whether Rap activation is important for FAK phosphorylation in B cells, or whether B cell spreading is regulated by Pyk2 or FAK. We now show that Pyk2 and FAK are differentially expressed and localized in B cells, that Pyk2 and FAK are important for B cell spreading, and that integrin engagement enhances BCR-induced phosphorylation of Pyk2 and FAK, a process that depends on both Rap activation and actin dynamics.  相似文献   

3.
The small GTPase RhoA plays a critical role in signaling pathways activated by serum-derived factors, such as lysophosphatidic acid (LPA), including the formation of stress fibers in fibroblasts and neurite retraction and rounding of soma in neuronal cells. Previously, we have shown that ectopic expression of v-Crk, an SH2/SH3 domain-containing adapter proteins, in PC12 cells potentiates nerve growth factor (NGF)-induced neurite outgrowth and promotes the survival of cells when NGF is withdrawn. In the present study we show that, when cultured in 15% serum or lysophosphatidic acid-containing medium, the majority of v-Crk-expressing PC12 cells (v-CrkPC12 cells) display a flattened phenotype with broad lamellipodia and are refractory to NGF-induced neurite outgrowth unless serum is withdrawn. v-Crk-mediated cell flattening is inhibited by treatment of cells with C3 toxin or by mutation in the Crk SH2 or SH3 domain. Transient cotransfection of 293T cells with expression plasmids for p160ROCK (Rho-associated coiled-coil-containing kinase) and v-Crk, but not SH2 or SH3 mutants of v-Crk, results in hyperactivation of p160ROCK. Moreover, the level of phosphatidylinositol-4,5-bisphosphate is increased in v-CrkPC12 cells compared to the levels in mutant v-Crk-expressing cells or wild-type cells, consistent with PI(4)P5 kinase being a downstream target for Rho. Expression of v-Crk in PC12 cells does not result in activation of Rac- or Cdc42-dependent kinases PAK and S6 kinase, demonstrating specificity for Rho. In contrast to native PC12 cells, in which focal adhesions and actin stress fibers are not observed, immunohistochemical analysis of v-CrkPC12 cells reveals focal adhesion complexes which are formed at the periphery of the cell and are connected to actin cables. The formation of focal adhesions correlates with a concomitant upregulation in the expression of focal adhesion proteins FAK, paxillin, α3-integrin, and a higher-molecular-weight form of β1-integrin. Our results indicate that v-Crk activates the Rho-signaling pathway and serves as a scaffolding protein during the assembly of focal adhesions in PC12 cells.  相似文献   

4.
The actin cytoskeleton plays a crucial role for the spreading of cells, but is also a key element for the structural integrity and internal tension in cells. In fact, adhesive cells and their actin stress fiber–adhesion system show a remarkable reorganization and adaptation when subjected to external mechanical forces. Less is known about how mechanical forces alter the spreading of cells and the development of the actin–cell-matrix adhesion apparatus. We investigated these processes in fibroblasts, exposed to uniaxial cyclic tensile strain (CTS) and demonstrate that initial cell spreading is stretch-independent while it is directed by the mechanical signals in a later phase. The total temporal spreading characteristic was not changed and cell protrusions are initially formed uniformly around the cells. Analyzing the actin network, we observed that during the first phase the cells developed a circumferential arc-like actin network, not affected by the CTS. In the following orientation phase the cells elongated perpendicular to the stretch direction. This occurred simultaneously with the de novo formation of perpendicular mainly ventral actin stress fibers and concurrent realignment of cell-matrix adhesions during their maturation. The stretch-induced perpendicular cell elongation is microtubule-independent but myosin II-dependent. In summary, a CTS-induced cell orientation of spreading cells correlates temporary with the development of the acto-myosin system as well as contact to the underlying substrate by cell-matrix adhesions.  相似文献   

5.
黏着斑激酶与细胞迁移   总被引:2,自引:0,他引:2  
细胞迁移过程始于细胞前端板状伪足的形成、外周黏附的建立、细胞体的收缩和尾部的解离.黏着斑激酶是一种非受体酪氨酸蛋白激酶,通过其激酶活性和"脚手架"的功能在细胞迁移的各个过程中发挥关键作用.现重点介绍黏着斑激酶介导的信号转导通路及其在调控细胞迁移方面的研究进展.  相似文献   

6.
Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.  相似文献   

7.
Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, β-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression.Mammalian Rap proteins Rap1a/b and Rap2a/b/c are members of the Ras superfamily of small GTPases. Rap proteins are active when bound to GTP and inactive when bound to GDP. Cellular Rap activity is regulated by the concerted action of guanine nucleotide exchange factors that activate Rap (RapGEFs) and Rap-specific GTPase-activating proteins (RapGAPs) that inactivate Rap (reviewed in reference 10). The Rap1GAP family is composed of several members, including Rap1GAP, Rap1GAPII, Spa-1/SIPA1, and E6TP1/SIPA1L1. Several lines of evidence suggest that RapGAPs function as tumor and/or invasion suppressors. Downregulation of E6TP1 by human papillomavirus protein E6 contributes to cervical cancer (20, 21), and Spa-1 deficiency in mice induces a spectrum of myelodysplastic disorders similar to chronic myelogenous leukemia (26). The SPA1 gene was identified as a candidate for the metastasis efficiency modifier locus in mice (38). Although the relevance of this observation to humans is not yet clear, single-nucleotide polymorphisms in the SPA1 gene in human breast tumors have been associated with lymph node involvement and poor survival (15). Intriguingly, Spa-1 interacts with Brd4 (18) and Rrp-1b (13), the protein products of genes associated with patterns of extracellular matrix protein gene expression characteristic of metastatic tumors (14).The RAP1GAP gene maps to 1p35-36, a chromosomal region subject to copy number alterations in human tumors (36, 49). Rap1GAP protein levels are decreased in pancreatic adenocarcinomas (53), papillary thyroid carcinomas (37, 47, 57), and melanomas (56). Rap1GAP downregulation has been shown to arise as a consequence of proteasomal degradation (46), loss of heterozygosity (37, 53), and promoter methylation (56, 57). Mutations of unknown significance in RAP1GAP have been identified in breast cancer (42). Although downregulation of Rap1GAP is frequent in human tumors, the functional significance of decreased Rap1GAP expression is unknown. Up to now, studies assessing the role of Rap1GAP in tumor cells have relied exclusively on overexpression experiments. Overexpression of Rap1GAP in oropharyngeal squamous cell (54) and pancreatic (53) carcinoma lines impaired tumor formation in mouse xenograft models. In vitro, overexpression of Rap1GAP impaired tumor cell proliferation (34, 47, 53, 54, 56) and enhanced apoptosis (34, 53, 56). In some instances, overexpression of Rap1GAP inhibited tumor cell migration and invasion (3, 47, 53, 56), while in others, it enhanced invasion (34). While these studies provide insight into cellular processes that can be deregulated by overexpression, they do not assess the significance of depletion of endogenous Rap1GAP in human tumors.Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The majority of CRC deaths arise as a consequence of distant metastases, most frequently to the liver. While the genetic basis of CRC is well understood (19, 48), less is known about the events that trigger the transition to metastatic disease. We report that Rap1GAP is highly expressed in normal colonic epithelium and that its expression is profoundly decreased in primary colorectal carcinomas. As one strategy to assess the significance of Rap1GAP depletion, the expression of Rap1GAP was silenced in human colon carcinoma cells. Silencing of Rap1GAP induced marked increases in Rap1 and Rap2 activity, the first evidence that Rap1GAP is an essential negative regulator of Rap GTPases in colon cancer. Rap1 regulates inside-out signaling through integrins (reviewed in references 8, 9, and 11) and is a target of outside-in signaling via cadherins (reviewed in reference 30). Downregulation of Rap1GAP induced profound alterations in cell/matrix and cell/cell adhesion. Suppressing Rap1GAP expression enhanced adhesion and spreading on collagen. Unexpectedly, based on the role of Rap1 in promoting cell/cell adhesion, silencing of Rap1GAP impaired cell/cell adhesion. These findings demonstrate a requirement for regulated Rap activity in the maintenance of epithelial cell structure and demonstrate a heretofore unappreciated role for Rap1GAP in the regulation of cell/cell adhesion. As the dissemination of tumor cells requires the weakening of cell/cell adhesion and an enhanced ability to adhere to collagen-rich interstitial matrices, our studies identify a potential mechanism through which loss of Rap1GAP contributes to tumor progression.  相似文献   

8.
Human dental follicle cells (DFCs) are ectomesenchymal multipotent stem cells that form spheroid cell clusters (SCCs) under serum free medium cell culture conditions (SFM). Until today, molecular mechanisms for the formation of SCCs are unknown. In this study a quantitative phosphoproteomics approach revealed regulated phosphorylated proteins in SCCs, which were derived from DFCs after 24 and 48 h in SFM. These regulated proteins were categorized using the Kyoto encyclopedia of genes and genomes program. Here, cellular processes and signaling pathway were identified such as the focal adhesion kinase (FAK) signaling pathway. In addition to the phosphoproteomics approach we showed that a specific phosphorylation of FAK (Y397) was required for the formation of SCCs. In conclusion, this study disclosed the phosphoproteome of SCCs for the first time and showed that the FAK signaling pathway is required for the formation of SCCs.  相似文献   

9.
Focal adhesion (FA) signaling mediated by adhesion to extracellular matrix and growth factor receptors contributes to the regulation of the cellular stress response to external stimuli. Critical to focal adhesion assembly and signaling is the adapter protein PINCH1. To evaluate whether the prosurvival function of PINCH1 in radiation cell survival depends on cell adhesion, we examined PINCH1 fl/fl and PINCH1 −/− mouse embryonic fibroblasts and human cancer cell lines. Here, we found that the enhanced cellular radiosensitivity mediated by PINCH1 depletion observed under adhesion conditions is conserved when cells are irradiated under suspension conditions. This unsuspected finding could not be explained by the observed modification of adhesion and growth factor associated signaling involving FAK, Paxillin, p130CAS, Src, AKT, GSK3β and ERK1/2 under suspension and serum withdrawal relative to adhesion conditions with serum. Our data suggest that the adapter protein PINCH1 critically participates in the regulation of the cellular radiosensitivity of normal and malignant cells similarly under adhesion and suspension conditions.  相似文献   

10.
CD157/BST-1 behaves both as an ectoenzyme and signaling receptor and is an important regulator of leukocyte trafficking and ovarian cancer progression. However, the molecular interactions underpinning the role of CD157 in these processes remain obscure. The biological functions of CD157 and its partnership with members of the integrin family prompted us to assume the existence of a direct interaction between CD157 and an unknown component of the extracellular matrix. Using solid-phase binding assays and surface plasmon resonance analysis, we demonstrated that CD157 binds fibronectin with high affinity within its heparin-binding domains 1 and 2. Furthermore, we found that CD157 binds to other extracellular matrix proteins containing heparin-binding domains. Finally, we proved that the CD157-fibronectin interaction occurs with living cells, where it elicits CD157-mediated cell responses. Indeed, knockdown of CD157 in Met-5A mesothelial cells changed their morphology and cytoskeleton organization and attenuated the activation of intracellular signaling pathways triggered by fibronectin. This led to impaired cell spreading and adhesion to selected extracellular matrix proteins. Collectively, these findings indicate a central role of CD157 in cell-extracellular matrix interactions and make CD157 an attractive therapeutic target in inflammation and cancer.  相似文献   

11.
In this report, we have analyzed the potential role and mechanisms of integrin signaling through FAK in cell cycle regulation by using tetracycline-regulated expression of exogenous FAK and mutants. We have found that overexpression of wild-type FAK accelerated G1 to S phase transition. Conversely, overexpression of a dominant-negative FAK mutant ΔC14 inhibited cell cycle progression at G1 phase and this inhibition required the Y397 in ΔC14. Biochemical analyses indicated that FAK mutant ΔC14 was mislocalized and functioned as a dominant-negative mutant by competing with endogenous FAK in focal contacts for binding signaling molecules such as Src and Fyn, resulting in a decreases of Erk activation in cell adhesion. Consistent with this, we also observed inhibition of BrdU incorporation and Erk activation by FAK Y397F mutant and FRNK, but not FRNKΔC14, in transient transfection assays using primary human foreskin fibroblasts. Finally, we also found that ΔC14 blocked cyclin D1 upregulation and induced p21 expression, while wild-type FAK increased cyclin D1 expression and decreased p21 expression. Taken together, these results have identified FAK and its associated signaling pathways as a mediator of the cell cycle regulation by integrins.  相似文献   

12.
Cell-extracellular matrix (ECM) is an important property of virtually all cells in multi-cellular organisms. Cell-ECM adhesion research, therefore, has broad impact on biology and medicine. Studies over the past three decades have resulted in tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Here, I focus on some of the general lessons that we have learned from recent studies on cell-ECM adhesion. In addition, I highlight several topics in this rapidly advancing research area. These topics, which include assembly, disassembly and regulation of cell-ECM adhesion structures, the molecular mechanisms of bi-directional signaling through cell-ECM adhesions, and the tissue and organ pathobiology of cell-ECM adhesion, are pertinent to our understanding of cell-ECM adhesion and signaling.Key Words: Focal adhesion, integrins, extracellular matrix, cytoskeleton, cell migrationCell-ECM adhesion is a fundamental process through which cells interact and communicate with the environment. Cell-ECM adhesion is essential for organogenesis during embryonic development. In adult, it is vital for maintenance of tissue integrity and organ functions. Alterations of cell-ECM adhesion hence are frequently associated with human diseases. Because of the broad significance of cell-ECM adhesion in biology and pathology, understanding how cell-ECM adhesion is mediated and regulated and determining how cell-ECM adhesion influences cell behavior have been the subjects of numerous studies. In particular, studies over the past three decades have led to major breakthroughs in our understanding of cell-ECM adhesion. Many of the key discoveries, including identification of integrins as major transmembrane receptors for ECM proteins, demonstration of integrins as bi-directional (outside-in and inside-out) transmembrane signaling machines, identification of talin, focal adhesion kinase (FAK), integrin-linked kinase (ILK) and other cytoplasmic and membrane-associated proteins as key regulators and effectors of integrins, and delineation of multiple downstream signaling pathways that relay signals from cell surface integrins to diverse cytoplasmic and nuclear effectors, have been reviewed in refs. 112. In this brief article, I will focus on some of the general features of cell-ECM adhesion and discuss from my personal perspective several key questions that remain to be answered in future studies.  相似文献   

13.
14.
15.
We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.  相似文献   

16.
17.
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAKbeta/RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.  相似文献   

18.
Cell migration is a fundamental cellular process requiring integrated activities of the cytoskeleton, membrane, and cell/extracellular matrix adhesions. Many cytoskeletal activities rely on microtubule filaments. It has been speculated that microtubules can serve as tracks to deliver proteins essential for focal adhesion turnover. Three microtubule end-binding proteins (EB1, EB2, and EB3) in mammalian cells can track the plus ends of growing microtubules. EB1 and EB3 together can regulate microtubule dynamics by promoting microtubule growth and suppressing catastrophe, whereas, in contrast, EB2 does not play a direct role in microtubule dynamic instability, and little is known about the cellular function of EB2. By quantitative proteomics, we identified mammalian HCLS1-associated protein X-1 (HAX1) as an EB2-specific interacting protein. Knockdown of HAX1 and EB2 in skin epidermal cells stabilizes focal adhesions and impairs epidermal migration in vitro and in vivo. Our results further demonstrate that cell motility and focal adhesion turnover require interaction between Hax1 and EB2. Together, our findings provide new insights for this critical cellular process, suggesting that EB2 association with Hax1 plays a significant role in focal adhesion turnover and epidermal migration.  相似文献   

19.
20.
JNK pathway-associated phosphatase (JKAP, also named DUSP22) is expressed in various tissues, indicating that JKAP may have an important biological function. We showed that JKAP localized in the actin filament-enriched region. Expression of JKAP reduced cell migration, whereas a JKAP mutant lacking catalytic activity promoted cell motility. JKAP efficiently removed tyrosine phosphorylation of several proteins. We have identified focal adhesion kinase (FAK) as a substrate of JKAP. Overexpression of JKAP, but not JKAP mutant lacking catalytic activity, decreased FAK phosphorylation at tyrosines 397, 576, and 577 in H1299 cells. Consistent with these results, decreasing JKAP expression by RNA interference promoted cell migration and Src-induced FAK phosphorylation. Taken together, this study identified a new role for JKAP in the modulation of FAK phosphorylation and cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号