首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The epithelial Na+ channel (ENaC) functions as a pathway for Na+ absorption in the kidney and lung, where it is crucial for Na+ homeostasis and blood pressure regulation. However, the basic mechanisms that control ENaC gating are poorly understood. Here we define a role in gating for residues forming interfaces between the extracellular domains of the three ENaC subunits. Using cysteine substitution combined with chemical cross-linking, we determined that residues located at equivalent positions in the three subunits (αK477, βE446, and γE455) form interfaces with residues in adjacent subunits (βV85, γV87, and αL120, respectively). Cross-linking of these residues altered ENaC activity in a length-dependent manner; long cross-linkers increased ENaC current by increasing its open probability, whereas short cross-linkers reduced ENaC open probability. Cross-linking also disrupted ENaC gating responses to extracellular pH and Na+, signals which modulate ENaC activity during shifts in volume status. Introduction of charged side chains at the interfacing residues altered ENaC activity in a charge-dependent manner. Current increased when like charges were present at both interfacing residues, whereas opposing charges reduced current. Together, these data indicate that conformational changes at intersubunit interfaces participate in ENaC transitions between the open and closed states; movements that increase intersubunit distance favor the open state, whereas the closed state is favored when the distance is reduced. This provides a mechanism to modulate ENaC gating in response to changing extracellular conditions that threaten Na+ homeostasis.  相似文献   

2.
The activity of the epithelial Na+ channel (ENaC) is modulated by Na+ self-inhibition, a down-regulation of the open probability of ENaC by extracellular Na+. A His residue within the extracellular domain of γENaC (γHis239) was found to have a critical role in Na+ self-inhibition. We investigated the functional roles of residues in the vicinity of this His by mutagenesis and analyses of Na+ self-inhibition responses in Xenopus oocytes. Significant changes in the speed and magnitude of Na+ self-inhibition were observed in 16 of the 47 mutants analyzed. These 16 mutants were distributed within a 22-residue tract. We further characterized this scanned region by examining the accessibility of introduced Cys residues to the sulfhydryl reagent MTSET. External MTSET irreversibly increased or decreased currents in 13 of 47 mutants. The distribution patterns of the residues where substitutions significantly altered Na+ self-inhibition or/and conferred sensitivity to MTSET were consistent with the existence of two helices within this region. In addition, single channel recordings of the γH239F mutant showed that, in the absence of Na+ self-inhibition and with an increased open probability, ENaCs still undergo transitions between open and closed states. We conclude that γHis239 functions within an extracellular allosteric regulatory subdomain of the γ subunit that has an important role in conferring the response of the channel to external Na+.  相似文献   

3.
The epithelial Na+ channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated. We observed that only the β and γ subunits were modified by Cys palmitoylation. Analyses of ENaCs with mutant β subunits revealed that Cys-43 and Cys-557 were palmitoylated. Xenopus oocytes expressing ENaC with a β C43A,C557A mutant had significantly reduced amiloride-sensitive whole cell currents, enhanced Na+ self-inhibition, and reduced single channel Po when compared with wild-type ENaC, while membrane trafficking and levels of surface expression were unchanged. Computer modeling of cytoplasmic domains indicated that β Cys-43 is in proximity to the first transmembrane α helix, whereas β Cys-557 is within an amphipathic α-helix contiguous with the second transmembrane domain. We propose that β subunit palmitoylation modulates channel gating by facilitating interactions between cytoplasmic domains and the plasma membrane.  相似文献   

4.
The extracellular regions of epithelial Na+ channel subunits are highly ordered structures composed of domains formed by α helices and β strands. Deletion of the peripheral knuckle domain of the α subunit in the αβγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na+ (Na+ self-inhibition). In contrast, deletion of either the β or γ subunit knuckle domain within the αβγ trimer dramatically reduces epithelial Na+ channel function and surface expression, and impairs subunit maturation. We systematically mutated individual α subunit knuckle domain residues and assessed functional properties of these mutants. Cysteine substitutions at 14 of 28 residues significantly suppressed Na+ self-inhibition. The side chains of a cluster of these residues are non-polar and are predicted to be directed toward the palm domain, whereas a group of polar residues are predicted to orient their side chains toward the space between the knuckle and finger domains. Among the mutants causing the greatest suppression of Na+ self-inhibition were αP521C, αI529C, and αS534C. The introduction of Cys residues at homologous sites within either the β or γ subunit knuckle domain resulted in little or no change in Na+ self-inhibition. Our results suggest that multiple residues in the α subunit knuckle domain contribute to the mechanism of Na+ self-inhibition by interacting with palm and finger domain residues via two separate and chemically distinct motifs.  相似文献   

5.
The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain β10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of β10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of β and γ subunit β10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two β, and two γ subunit β10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of β10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of β10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.  相似文献   

6.
Extracellular Zn2+ activates the epithelial Na+ channel (ENaC) by relieving Na+ self-inhibition. However, a biphasic Zn2+ dose response was observed, suggesting that Zn2+ has dual effects on the channel (i.e. activating and inhibitory). To investigate the structural basis for this biphasic effect of Zn2+, we examined the effects of mutating the 10 extracellular His residues of mouse γENaC. Four mutations within the finger subdomain (γH193A, γH200A, γH202A, and γH239A) significantly reduced the maximal Zn2+ activation of the channel. Whereas γH193A, γH200A, and γH202A reduced the apparent affinity of the Zn2+ activating site, γH239A diminished Na+ self-inhibition and thus concealed the activating effects of Zn2+. Mutation of a His residue within the palm subdomain (γH88A) abolished the low-affinity Zn2+ inhibitory effect. Based on structural homology with acid-sensing ion channel 1, γAsp516 was predicted to be in close proximity to γHis88. Ala substitution of the residue (γD516A) blunted the inhibitory effect of Zn2+. Our results suggest that external Zn2+ regulates ENaC activity by binding to multiple extracellular sites within the γ-subunit, including (i) a high-affinity stimulatory site within the finger subdomain involving His193, His200, and His202 and (ii) a low-affinity Zn2+ inhibitory site within the palm subdomain that includes His88 and Asp516.  相似文献   

7.
The amiloride-sensitive epithelial Nachannel (ENaC) is a heteromultimeric channel made of three αβγ subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in β and γ subunits at position βG525 and γG537 increased the apparent inhibitory constant (K i) for amiloride by >1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the α subunit increased amiloride K i by 20-fold, without changing channel conducting properties. Coexpression of these mutated αβγ subunits resulted in a nonconducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by externalZn2+ ions, in particular the αS583C mutant showing a K i for Zn2+of 29 μM. Mutations of residues αW582L or βG522D also increased amiloride K i, the later mutation generating a Ca2+blocking site located 15% within the membrane electric field. These experiments provide strong evidence that αβγ ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of αβγ subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ions at an external Na+binding site preventing ion permeation through the channel pore.  相似文献   

8.
The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family.  相似文献   

9.
The epithelial sodium channel (ENaC) is composed of three homologous subunits (α, β, and γ) with cytoplasmic N and C termini. Our previous work revealed that two cytoplasmic Cys residues in the β subunit, βCys-43 and βCys-557, are Cys-palmitoylated. ENaCs with mutant βC43A/C557A exhibit normal surface expression but enhanced Na+ self-inhibition and reduced channel open probability. Although the α subunit is not palmitoylated, we now show that the two cytoplasmic Cys residues in the γ subunit are palmitoylated. ENaCs with mutant γC33A, γC41A, or γC33A/C41A exhibit reduced activity compared with wild type channels but normal surface expression and normal levels of α and γ subunit-activating cleavage. These mutant channels have significantly enhanced Na+ self-inhibition and reduced open probability compared with wild type ENaCs. Channel activity was enhanced by co-expression with the palmitoyltransferase DHHC2 that also co-immunoprecipitates with ENaCs. Secondary structure prediction of the N terminus of the γ subunit places γCys-33 within an α-helix and γCys-44 on a coil before the first transmembrane domain within a short tract that includes a well conserved His-Gly motif, where mutations have been associated with altered channel gating. Our current and previous results suggest that palmitoylation of the β and γ subunits of ENaCs enhances interactions of their respective cytoplasmic domains with the plasma membrane and stabilizes the open state of the channel. Comparison of activities of channels lacking palmitoylation sites in individual or multiple subunits revealed that γ subunit palmitoylation has a dominant role over β subunit palmitoylation in modulating ENaC gating.  相似文献   

10.
The epithelial Na+ channel (ENaC) is regulated by a variety of external factors that alter channel activity by inducing conformational changes within its large extracellular region that are transmitted to the gate. The wrist domain consists of small linkers connecting the extracellular region to the transmembrane domains, where the channel pore and gate reside. We employed site-directed mutagenesis combined with two-electrode voltage clamp to investigate the role of the wrist domain in channel gating in response to extracellular factors. Channel inhibition by external Na+ was reduced by selected mutations within the wrist domain of the α subunit, likely reflecting an increase in channel open probability. The most robust changes were observed when Cys was introduced at αPro-138 and αSer-568, sites immediately adjacent to the palm domain. In addition, one of these Cys mutants exhibited an enhanced response to shear stress. In the context of channels that have a low open probability due to retention of an inhibitory tract, the response to external Na+ was reduced by Cys substitutions at both αPro-138 and αSer-568. We observed a significant correlation between changes in channel inhibition by external Na+ and the relative response to shear stress for the α subunit mutants that were examined. Mutants that exhibited reduced inhibition by external Na+ also showed an enhanced response to shear stress. Together, our data suggest that the wrist domain has a role in modulating the channel''s response to external stimuli.  相似文献   

11.
Intracellular [Na+] ([Na+]i) modulates the activity of the epithelial Na channel (ENaC) to help prevent cell swelling and regulate epithelial Na+ transport, but the underlying mechanisms remain unclear. We show here that short-term (60–80 min) incubation of ENaC-expressing oocytes in high Na+ results in a 75% decrease in channel activity. When the β subunit was truncated, corresponding to a gain-of-function mutation found in Liddle''s syndrome, the same maneuver reduced activity by 45% despite a larger increase in [Na+]i. In both cases the inhibition occurred with little to no change in cell-surface expression of γENaC. Long-term incubation (18 hours) in high Na+ reduced activity by 92% and 75% in wild-type channels and Liddle''s mutant, respectively, with concomitant 70% and 52% decreases in cell-surface γENaC. In the presence of Brefeldin A to inhibit forward protein trafficking, high-Na+ incubation decreased wt ENaC activity by 52% and 88% after 4 and 8 hour incubations, respectively. Cleaved γENaC at the cell surface had lifetimes at the surface of 6 hrs in low Na+ and 4 hrs in high Na+, suggesting that [Na+]i increased the rate of retrieval of cleaved γ ENaC by 50%. This implies that enhanced retrieval of ENaC channels at the cell surface accounts for part, but not all, of the downregulation of ENaC activity shown with chronic increases in [Na+]i.  相似文献   

12.
The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.  相似文献   

13.
The extracellular domain of the epithelial sodium channel ENaC is exposed to a wide range of Cl concentrations in the kidney and in other epithelia. We tested whether Cl alters ENaC activity. In Xenopus oocytes expressing human ENaC, replacement of Cl with SO42−, H2PO4, or SCN produced a large increase in ENaC current, indicating that extracellular Cl inhibits ENaC. Extracellular Cl also inhibited ENaC in Na+-transporting epithelia. The anion selectivity sequence was SCN < SO42− < H2PO4 < F < I < Cl < Br. Crystallization of ASIC1a revealed a Cl binding site in the extracellular domain. We found that mutation of corresponding residues in ENaC (αH418A and βR388A) disrupted the response to Cl, suggesting that Cl might regulate ENaC through an analogous binding site. Maneuvers that lock ENaC in an open state (a DEG mutation and trypsin) abolished ENaC regulation by Cl. The response to Cl was also modulated by changes in extracellular pH; acidic pH increased and alkaline pH reduced ENaC inhibition by Cl. Cl regulated ENaC activity in part through enhanced Na+ self-inhibition, a process by which extracellular Na+ inhibits ENaC. Together, the data indicate that extracellular Cl regulates ENaC activity, providing a potential mechanism by which changes in extracellular Cl might modulate epithelial Na+ absorption.The epithelial Na+ channel ENaC2 is a heterotrimer of homologous α, β, and γ subunits (1, 2). ENaC functions as a pathway for Na+ absorption across epithelial cells in the kidney collecting duct, lung, distal colon, and sweat duct (reviewed in Refs. 3 and 4). Na+ transport is critical for the maintenance of Na+ homeostasis and for the control of the composition and quantity of the fluid on the apical membrane of these epithelia. ENaC mutations and defects in its regulation cause inherited forms of hypertension and hypotension (5) and may contribute to the pathogenesis of lung disease in cystic fibrosis (6).ENaC is a member of the DEG/ENaC family of ion channels. A common structural feature of these channels is a large extracellular domain that plays a critical role in channel gating. For example, in ASICs, the extracellular domain functions as a receptor for protons, which transiently activate the channel by titrating residues that form an acidic pocket (7). FaNaCh is a ligand-gated family member in Helix aspersa, activated by the peptide FMRFamide (8). In Caenorhabditis elegans MEC family members, the extracellular domain is thought to respond to mechanical signals (9).ENaC differs from other family members because it is constitutively active in the absence of a ligand/stimulus. However, a convergence of data indicate that ENaC gating is modulated by a variety of molecules that bind to or modify its extracellular domains, including proteases (1012), Na+ (1315), protons (16), and the divalent cations Zn2+ and Ni2+ (17, 18). These findings suggest that the ENaC extracellular domain might regulate epithelial Na+ transport by sensing and integrating diverse signals in the extracellular environment.In the current study, we tested the hypothesis that ENaC activity is regulated by changes in the extracellular Cl concentration. Several observations suggested that Cl might be a strong candidate to regulate the channel. First, transport of Na+ and Cl are often coupled to maintain electroneutrality. Second, ENaC is exposed to large changes in extracellular Cl concentration. For example, in the kidney collecting duct, the urine Cl concentration varies widely (19). As the predominant anion, its concentration parallels that of Na+ in most clinical states. However, under conditions of metabolic alkalosis and metabolic acidosis, the Na+ and Cl concentrations can become dissociated as a result of increased urinary bicarbonate (alkalosis) or ammonium (acidosis) (19). Thus, ENaC is well positioned to respond to changes in Cl concentration. Third, crystallization of ASIC1a revealed a binding site for a Cl ion at the base of the thumb domain (7). The Cl is coordinated by Arg-310 and Glu-314 from one subunit and Lys-212 from an adjacent subunit. Although the functional role of Cl binding to ASIC1a is unknown, it supports the hypothesis that extracellular Cl might regulate the activity of DEG/ENaC ion channels.  相似文献   

14.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that prevent its proper folding and trafficking to the apical membrane of epithelial cells. Absence of cAMP-mediated Cl secretion in CF airways causes poorly hydrated airway surfaces in CF patients, and this condition is exacerbated by excessive Na+ absorption. The mechanistic link between missing CFTR and increased Na+ absorption in airway epithelia has remained elusive, although substantial evidence implicates hyperactivity of the epithelial Na+ channel (ENaC). ENaC is known to be activated by selective endoproteolysis of the extracellular domains of its α- and γ-subunits, and it was recently reported that ENaC and CFTR physically associate in mammalian cells. We confirmed this interaction in oocytes by co-immunoprecipitation and found that ENaC associated with wild-type CFTR was protected from proteolytic cleavage and stimulation of open probability. In contrast, ΔF508 CFTR, the most common mutant protein in CF patients, failed to protect ENaC from proteolytic cleavage and stimulation. In normal airway epithelial cells, ENaC was contained in the anti-CFTR immunoprecipitate. In CF airway epithelial cultures, the proportion of full-length to total α-ENaC protein signal was consistently reduced compared with normal cultures. Our results identify limiting proteolytic cleavage of ENaC as a mechanism by which CFTR down-regulates Na+ absorption.  相似文献   

15.
Epithelial sodium channels (ENaCs) perform diverse physiological roles by mediating Na+ absorption across epithelial surfaces throughout the body. Excessive Na+ absorption in kidney and colon elevates blood pressure and in the airways disrupts mucociliary clearance. Potential therapies for disorders of Na+ absorption require better understanding of ENaC regulation. Recent work has established partial and selective proteolysis of ENaCs as an important means of channel activation. In particular, channel-activating transmembrane serine proteases (CAPs) and cognate inhibitors may be important in tissue-specific regulation of ENaCs. Although CAP2 (TMPRSS4) requires catalytic activity to activate ENaCs, there is not yet evidence of ENaC fragments produced by this serine protease and/or identification of the site(s) where CAP2 cleaves ENaCs. Here, we report that CAP2 cleaves at multiple sites in all three ENaC subunits, including cleavage at a conserved basic residue located in the vicinity of the degenerin site (α-K561, β-R503, and γ-R515). Sites in α-ENaC at K149/R164/K169/R177 and furin-consensus sites in α-ENaC (R205/R231) and γ-ENaC (R138) are responsible for ENaC fragments observed in oocytes coexpressing CAP2. However, the only one of these demonstrated cleavage events that is relevant for the channel activation by CAP2 takes place in γ-ENaC at position R138, the previously identified furin-consensus cleavage site. Replacement of arginine by alanine or glutamine (α,β,γR138A/Q) completely abolished both the Na+ current (INa) and a 75-kD γ-ENaC fragment at the cell surface stimulated by CAP2. Replacement of γ-ENaC R138 with a conserved basic residue, lysine, preserved both the CAP2-induced INa and the 75-kD γ-ENaC fragment. These data strongly support a model where CAP2 activates ENaCs by cleaving at R138 in γ-ENaC.  相似文献   

16.
The epithelial Na+ channel (ENaC) mediates the rate-limiting step in transepithelial Na+ transport in the distal segments of the nephron and in the lung. ENaC subunits are cleaved by proteases, resulting in channel activation due to the release of inhibitory tracts. Peptides derived from these tracts inhibit channel activity. The mechanism by which these intrinsic inhibitory tracts reduce channel activity is unknown, as are the sites where these tracts interact with other residues within the channel. We performed site-directed mutagenesis in large portions of the predicted periphery of the extracellular region of the α subunit and measured the effect of mutations on an 8-residue inhibitory tract-derived peptide. Our data show that the inhibitory peptide likely binds to specific residues within the finger and thumb domains of ENaC. Pairwise interactions between the peptide and the channel were identified by double mutant cycle experiments. Our data suggest that the inhibitory peptide has a specific peptide orientation within its binding site. Extended to the intrinsic inhibitory tract, our data suggest that proteases activate ENaC by removing residues that bind at the finger-thumb domain interface.  相似文献   

17.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

18.
Epithelial sodium channel (ENaC) is a Na+-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na+ absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin–angiotensin–aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.  相似文献   

19.
A long isoform of the human Epithelial Sodium Channel (ENaC) α subunit has been identified, but little data exist regarding the properties or regulation of channels formed by α728. The baseline whole cell conductance of oocytes expressing trimeric α728βγ channels was 898.1 ± 277.2 and 49.59 ± 13.2 µS in low and high sodium solutions, respectively, and was 11 and 2 fold higher than the conductances of α669βγ in same solutions. α728βγ channels were also 2 to 5 fold less sensitive to activation by the serine proteases subtilisin and trypsin than α669βγ in low and high Na+ conditions. The long isoform exhibited lower levels of full length and cleaved protein at the plasma membrane and a rightward shifted sensitivity to inhibition by increases of [Na+]i. Both channels displayed similar single channel conductances of 4 pS, and both were activated to a similar extent by reducing temperature, altogether indicating that activation of baseline conductance of α728βγ was likely mediated by enhanced channel activity or open probability. Expression of α728 in native kidneys was validated in human urinary exosomes. These data demonstrate that the long isoform of αENaC forms the structural basis of a channel with different activity and regulation, which may not be easily distinguishable in native tissue, but may underlie sodium hyperabsorption and salt sensitive differences in humans.  相似文献   

20.
Epithelial sodium channel (ENaC) in the kidneys is critical for Na+ balance, extracellular volume, and blood pressure. Altered ENaC function is associated with respiratory disorders, pseudohypoaldosteronism type 1, and Liddle syndrome. ENaC is known to interact with components of the cytoskeleton, but the functional roles remain largely unclear. Here, we examined the interaction between ENaC and filamins, important actin filament components. We first discovered by yeast two-hybrid screening that the C termini of ENaC α and β subunits bind filamin A, B, and C, and we then confirmed the binding by in vitro biochemical assays. We demonstrated by co-immunoprecipitation that ENaC, either overexpressed in HEK, HeLa, and melanoma A7 cells or natively expressed in LLC-PK1 and IMCD cells, is in the same complex with native filamin. Furthermore, the biotinylation and co-immunoprecipitation combined assays showed the ENaC-filamin interaction on the cell surface. Using Xenopus oocyte expression and two-electrode voltage clamp electrophysiology, we found that co-expression of an ENaC-binding domain of filamin substantially reduces ENaC channel function. Western blot and immunohistochemistry experiments revealed that the filamin A C terminus (FLNAC) modestly reduces the expression of the ENaC α subunit in oocytes and A7 cells. After normalizing the current by plasma membrane expression, we found that FLNAC results in ∼50% reduction in the ENaC channel activity. The inhibitory effect of FLNAC was confirmed by lipid bilayer electrophysiology experiments using purified ENaC and FLNAC proteins, which showed that FLNAC substantially reduces ENaC single channel open probability. Taken together, our study demonstrated that filamin reduces ENaC channel function through direct interaction on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号