首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular biomolecules contain unique molecular vibrations that can be visualized by coherent anti-Stokes Raman scattering (CARS) microscopy without the need for labels. Here we review the application of CARS microscopy for label-free imaging of cells and tissues using the natural vibrational contrast that arises from biomolecules like lipids as well as for imaging of exogenously added probes or drugs. High-resolution CARS microscopy combined with multimodal imaging has allowed for dynamic monitoring of cellular processes such as lipid metabolism and storage, the movement of organelles, adipogenesis and host-pathogen interactions and can also be used to track molecules within cells and tissues. The CARS imaging modality provides a unique tool for biological chemists to elucidate the state of a cellular environment without perturbing it and to perceive the functional effects of added molecules.  相似文献   

2.
The accumulation of lipids in non-adipose tissues is attracting increasing attention due to its correlation with obesity. In muscle tissue, ectopic deposition of specific lipids is further correlated with pathogenic development of insulin resistance and type 2 diabetes. Most intramyocellular lipids are organized into lipid droplets (LDs), which are metabolically active organelles. In order to better understand the putative role of LDs in pathogenesis, insight into both the location of LDs and nearby chemistry of muscle tissue is very useful. Here, we demonstrate the use of label-free coherent anti-Stokes Raman scattering (CARS) microscopy in combination with multivariate, chemometric analysis to visualize intracellular lipid accumulations in ex vivo muscle tissue. Consistent with our previous results, hyperspectral CARS microscopy showed an increase in LDs in tissues where LD proteins were overexpressed, and further chemometric analysis showed additional features morphologically (and chemically) similar to mitochondria that colocalized with LDs. CARS imaging is shown to be a very useful method for label-free stratification of ectopic fat deposition and cellular organelles in fresh tissue sections with virtually no sample preparation.  相似文献   

3.
目的:阐明非酒精性脂肪肝病(NAFLD)的超微结构特点。方法:收集我校和其他单位送检的3例单纯性非酒精性脂肪肝,16例NASH患者和4例NAFLD肝硬化患者的肝穿刺组织。用2.5%戊二醛、1%锇酸双固定、Epon 812包埋,超薄切片70nm,醋酸铀和柠檬酸铅染色后,JEM-2000EX透射电镜观察。结果:单纯性脂肪肝患者主要表现为大小不等的脂滴沉积、以小脂滴为主,可互相融合。NASH患者的肝细胞都可出现大量脂滴积聚,为大小脂滴混合型、内容物主要为中等电子密度、比较均一的甘油三酯,部分脂滴周围可见磷脂成分,NASH患者肝细胞内脂滴也互相融合。肝细胞线粒体的超微结构改变包括多形性线粒体、基质颗粒增多、线粒体增大和嵴的丧失是主要的电镜异常发现,线粒体内还可见副晶格样包涵体。部分NASH患者肝细胞内可见Mallory小体。NASH患者肝细胞周围可见淋巴细胞浸润。肝血窦Kupffer细胞增生不明显,NAFLD肝硬化患者Disse间隙和肝细胞间可见胶原纤维增生。结论:NAFLD具有较为明确的超微结构改变,电镜检查有助于诊断。  相似文献   

4.
Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1β. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis.  相似文献   

5.
The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS) microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor), rict-1 (rictor) and sgk-1 (serum glucocorticoid kinase). CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead to the staining of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans.  相似文献   

6.
《Organogenesis》2013,9(4):231-237
Cultured DRGs in different gel scaffolds were analyzed using CARS microscopy to determine its possible use as a label-free imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of CARS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, ωp ? ωs, to match the vibration of C-H bonds in the cell membrane, the CARS signal yields detailed, high-quality images of neurites with single membrane detection sensitivity. The results demonstrate that CARS imaging allows monitoring of cellular growth in a tissue scaffold over time, with a contrast that shows comparable cellular structures to those obtained using standard fluorescent staining techniques. These findings show the potential of CARS microscopy to assist in the understanding of organogenesis processes in a tissue scaffold.  相似文献   

7.
Despite the ubiquitous roles of lipids in biology, the detection of lipids has relied on invasive techniques, population measurements, or nonspecific labeling. Such difficulties can be circumvented by a label-free imaging technique known as coherent anti-Stokes Raman (CARS) microscopy, which is capable of chemically selective, highly sensitive, and high-speed imaging of lipid-rich structures with submicron three-dimensional spatial resolution. We review the broad applications of CARS microscopy to studies of lipid biology in cell cultures, tissue biopsies, and model organisms. Recent technical advances, limitations of the technique, and perspectives are discussed.  相似文献   

8.

Background and Aims

Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD.

Methods

We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0–4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals.

Results

We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III.

Conclusions

This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading.  相似文献   

9.
Elucidation of the molecular mechanisms regulating lipid storage and metabolism is essential for mitigating excess adiposity and obesity, which has been associated with increased prevalence of severe pathological conditions such as cardiovascular disorders and type II diabetes, worldwide. However, imaging fatty acid distribution and dynamics in vivo, at the cellular or organismal level is challenging. We developed a label-free method for visualizing lipid depositions in vivo, based on third harmonic generation (THG) microscopy. THG imaging requires a single pulsed-laser light source, alleviating the technical challenges of implementing coherent anti-Stokes Raman scattering spectroscopy (CARS) to detect fat stores in living cells. We demonstrate that THG can be used to efficiently and reliably visualize lipid droplets in Caenorhabditis elegans. Thus, THG microscopy offers a versatile alternative to fluorescence and dye-based approaches for lipid biology research.  相似文献   

10.
Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.  相似文献   

11.
Cultured DRGs in different gel scaffolds were analyzed using CA RS microscopy to determine its possible use as a label-free imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of CA RS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, ωps, to match the vibration of C–H bonds in the cell membrane, the CA RS signal yields detailed, high-quality images of neurites with single membrane detection sensitivity. The results demonstrate that CA RS imaging allows monitoring of cellular growth in a tissue scaffold over time, with a contrast that shows comparable cellular structures to those obtained using standard fluorescent staining techniques. These findings show the potential of CARS microscopy to assist in the understanding of organogenesis processes in a tissue scaffold.Key words: dorsal root ganglia, neuronal growth, coherent anti-stokes raman scattering, nonlinear optical microscopy, label-free imaging, chondroitin sulfate, hyaluronic acid, poly(ethylene glycol) hydrogel  相似文献   

12.
There is increasing interest in bioengineering of lipids for use in functional foods, pharmaceuticals, and biofuels. Saccharomyces cerevisiae is a widely utilized cell factory for biotechnological production, thus a tempting alternative. Herein, we show how its neutral lipid accumulation varies throughout metabolic phases under nutritional conditions relevant for large-scale fermentation. Population-averaged metabolic data were correlated with lipid storage at the single-cell level monitored at submicron resolution by label-free coherent anti-Stokes Raman scattering (CARS) microscopy. While lipid droplet sizes are fairly constant, the number of droplets is a dynamic parameter determined by glucose and ethanol levels. The lowest number of lipid droplets is observed in the transition phase between glucose and ethanol fermentation. It is followed by a buildup during the ethanol phase. The surplus of accumulated lipids is then mobilized at concurrent glucose and ethanol starvation in the subsequent stationary phase. Thus, the highest amount of lipids is found in the ethanol phase, which is about 0.3 fL/cell. Our results indicate that the budding yeast, S. cerevisiae, can be used for the biosynthesis of lipids and demonstrate the strength of CARS microscopy for monitoring the dynamics of lipid metabolism at the single-cell level of importance for optimized lipid production.  相似文献   

13.
Senescent cells have been observed in certain aged or damaged tissues. However, the information about the effects of aging on liver cells is limited. In the present study, we have examined age-related histological changes in the livers of senescence marker protein knockout (SMP30-/-) mice, which are considered as a murine aging model due to the more sensitive response to apoptotic reagents and due to their shorter life span. In livers of old SMP30-/- mice, numerous hepatic stellate cells (HSCs) were hypertrophic and contained abundant microvesicular lipid droplets in cytoplasm. We have found that the expression of peroxisome proliferators-activated receptor γ (PPARγ), which is a protein related to lipid metabolism and HSC quiescence, was increased in hypertrophic HSCs by aging and vitamin C (VC) deficiency, whereas these phenomena were dramatically reduced by antioxidant treatment. Therefore, these prominent phenotypic changes can be considered as aging markers in the livers of animals which are subjected to antioxidant property evaluation.  相似文献   

14.
A new vibrational imaging method based on coherent anti-Stokes Raman scattering (CARS) has been used for high-speed, selective imaging of neutral lipid droplets (LDs) in unstained live fibroblast cells. LDs have a high density of C-H bonds and show a high contrast in laser-scanning CARS images taken at 2,845 cm-1, the frequency for aliphatic C-H vibrations. The contrast from LDs was confirmed by comparing CARS and Oil Red O (ORO)-stained fluorescence images. The fluorescent labeling processes were examined with CARS microscopy. It was found that ORO staining of fixed cells caused aggregation of LDs, whereas fixing with formaldehyde or staining with Nile Red did not affect LDs. CARS microscopy was also used to monitor the 3T3-L1 cell differentiation process, revealing that there was an obvious clearance of LDs at the early stage of differentiation. After that, the cells started to differentiate and reaccumulate LDs in the cytoplasm in a largely unsynchronized manner. Differentiated cells formed small colonies surrounded by undifferentiated cells that were devoid of LDs. These observations demonstrate that CARS microscopy can follow dynamic changes in live cells with chemical selectivity and noninvasiveness. CARS microscopy, in tandem with other techniques, provides exciting possibilities for studying LD dynamics under physiological conditions without perturbation of cell functions.  相似文献   

15.
Urasaki Y  Johlfs MG  Fiscus RR  Le TT 《PloS one》2012,7(6):e38418
Visceral adipose tissue (VAT) inflammation is recognized as a mechanism by which obesity is associated with metabolic diseases. The communication between adipose tissue macrophages (ATMs) and adipocytes is important to understanding the interaction between immunity and energy metabolism and its roles in obesity-induced diseases. Yet visualizing adipocytes and macrophages in complex tissues is challenging to standard imaging methods. Here, we describe the use of a multimodal nonlinear optical (NLO) microscope to characterize the composition of VATs of lean and obese mice including adipocytes, macrophages, and collagen fibrils in a label-free manner. We show that lipid metabolism processes such as lipid droplet formation, lipid droplet microvesiculation, and free fatty acids trafficking can be dynamically monitored in macrophages and adipocytes. With its versatility, NLO microscopy should be a powerful imaging tool to complement molecular characterization of the immunity-metabolism interface.  相似文献   

16.
Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the “random forest” ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.  相似文献   

17.
Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the “random forest” ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.  相似文献   

18.
Liu Y  Zhou D  Zhang F  Tu Y  Xia Y  Wang H  Zhou B  Zhang Y  Wu J  Gao X  He Z  Zhai Q 《Journal of lipid research》2012,53(3):358-367
Patt1 is a newly identified protein acetyltransferase that is highly expressed in liver. However, the role of Patt1 in liver is still unclear. We generated Patt1 liver-specific knockout (LKO) mice and mainly measured the effect of hepatic Patt1 deficiency on lipid metabolism. Hepatic Patt1 deficiency in male mice markedly decreases fat mass and dramatically alleviates age-associated accumulation of lipid droplets in liver. Moreover, hepatic Patt1 abrogation in male mice significantly reduces the liver triglyceride and free fatty acid levels, but it has no effect on liver cholesterol level, liver weight, and liver function. Consistently, primary cultured Patt1-deficient hepatocytes are resistant to palmitic acid-induced lipid accumulation, but hepatic Patt1 deficiency fails to protect male mice from high-fat diet-induced hepatic steatosis. Further studies show that hepatic Patt1 deficiency decreases fatty acid uptake, reduces lipid synthesis, and enhances fatty acid oxidation, which may contribute to the attenuated hepatic steatosis in Patt1 LKO mice. These results demonstrate that Patt1 plays an important role in hepatic lipid metabolism and have implications toward resolving age-associated hepatic steatosis.  相似文献   

19.
We report multimodal nonlinear optical imaging of fascia, a rich collagen type I sheath around internal organs and muscle. We show that second harmonic generation (SHG), third harmonic generation (THG) and Coherent anti-Stokes Raman scattering (CARS) microscopy techniques provide complementary information about the sub-micron architecture of collagen arrays. Forward direction SHG microscopy reveals the fibrillar arrangement of collagen type I structures as the main matrix component of fascia. SHG images detected in the backward direction as well as images of forward direction CARS microscopy show that the longitudinal collagen fiber bundles are further arranged in sheet-like bands. Forward-THG microscopy reveals the optically homogeneous content of the collagen sheet on a spatial scale of the optical wavelength. This is supported by the fact that the third harmonic signal is observed only at the boundaries between the sheets as well as by the CARS data obtained in both directions. The observations made with THG and CARS microscopy are explained using atomic force microscopy images.  相似文献   

20.
BACKGROUND: Omega‐6 fatty acids are important to fetal development. However, during gestation/lactation, these fatty acids may contribute toward the development of fat tissue. Omega‐9 fatty acids are associated with a reduction in serum lipids and protection from liver disease. OBJECTIVES: The present study investigated the effect of the maternal intake of omega‐6 and omega‐9 in hypercholesterolemic mothers on the liver of the offspring. METHODS: LDL receptor–deficient mice were fed a diet rich in either omega‐6 (E6D) or omega‐9 (E9D) for 45 days prior to mating and until the birth of the offspring, evaluating the effect on the offspring liver in comparison to a standard diet (STD). RESULTS: Mothers fed with the E6D experienced an increase in total cholesterol (TC) and the offspring exhibited an increase in TC, hepatic triglycerides (TG), and CC‐chemokine ligand (CCL)2/monocyte chemoattractant protein (MCP)‐1 as well as a reduction in HDL. Histological analysis on this group revealed steatosis, leukocyte infiltrate, and increased CCL2/MCP‐1 expression. The ultrastructural analysis revealed hepatocytes with lipid droplets and myofibroblasts. The offspring of mothers fed the standard diet exhibited low serum TC, but microvesicular steatosis was observed. The offspring of mothers fed the E9D exhibited lower serum and hepatic TG as well as higher LDL in comparison to the other diets. The histological analyses revealed lower steatosis and leukocyte infiltrate. CONCLUSIONS: The findings suggest that hypercholesterolemic mothers with a diet rich in omega‐6 fatty acids predispose their offspring to steatohepatitis, whereas a diet rich in omega‐9 has a protective effect. Birth Defects Res (Part B) 89:164–170, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号