首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high affinity binding of the anthrax protective antigen (PA) to one of its receptors, capillary morphogenesis protein 2 (CMG2), is essential for the intoxication process of anthrax toxin. To acquire novel research tools to study the PA-CMG2 interaction, we generated several anti-CMG2 monoclonal antibodies (MAbs). We demonstrated that one of the MAbs, 4B5, could inhibit PA-CMG2 binding and could also protect the sensitive cells against an anthrax lethal toxin challenge. We identified the epitope recognized by 4B5 and confirmed that the key residues of the epitope were the residues 119YI-LK125 of CMG2. Based on our results, we propose that 4B5 binds to the E122 pocket of CMG2 and interrupts the interaction between the pocket and the PA 2β3-2β4 loop. To our knowledge, this is the first report to illustrate that an anti-CMG2 antibody could inhibit the PA-CMG2 interaction and therefore interfere with the intoxication of anthrax toxin.  相似文献   

2.
The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates entry of the two enzymatic moieties of the toxin into the cytosol. Two PA receptors, anthrax toxin receptor (ATR)/tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2), have been identified. We expressed and purified the von Willebrand A (VWA) domain of CMG2 and examined its interactions with monomeric and heptameric forms of PA. Monomeric PA bound a stoichiometric equivalent of CMG2, whereas the heptameric prepore form bound 7 eq. The Kd of the VWA domain-PA interaction is 170 pm when liganded by Mg2+, reflecting a 1000-fold tighter interaction than most VWA domains with their endogenous ligands. The dissociation rate constant is extremely slow, indicating a 30-h lifetime for the CMG2.PA monomer complex. CMG2 metal ion-dependent adhesion site (MIDAS) was studied kinetically and thermodynamically. The association rate constant (approximately 10(5) m(-1) s(-1)) is virtually identical in the presence or absence of Mg2+ or Ca2+ , but the dissociation rate of metal ion liganded complex is up to 4 orders of magnitude slower than metal ion free complex. Residual affinity (Kd approximately 960 nm) in the absence of divalent metal ions allowed the free energy for the contribution of the metal ion to be calculated as 5 kcal mol(-1), demonstrating that the metal ion-dependent adhesion site is directly coordinated by CMG2 and PA in the binding interface. The high affinity of the VWA domain for PA supports its potency in neutralizing anthrax toxin, demonstrating its potential utility as a novel therapeutic for anthrax.  相似文献   

3.
Cai C  Che J  Xu L  Guo Q  Kong Y  Fu L  Xu J  Cheng Y  Chen W 《PloS one》2011,6(6):e20646
Anthrax toxin is the major virulence factor produced by Bacillus anthracis. The toxin consists of three protein subunits: protective antigen (PA), lethal factor, and edema factor. Inhibition of PA binding to its receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) can effectively block anthrax intoxication, which is particularly valuable when the toxin has already been overproduced at the late stage of anthrax infection, thus rendering antibiotics ineffectual. Receptor-like agonists, such as the mammalian cell-expressed von Willebrand factor type A (vWA) domain of CMG2 (sCMG2), have demonstrated potency against the anthrax toxin. However, the soluble vWA domain of TEM8 (sTEM8) was ruled out as an anthrax toxin inhibitor candidate due to its inferior affinity to PA. In the present study, we report that L56A, a PA-binding-affinity-elevated mutant of sTEM8, could inhibit anthrax intoxication as effectively as sCMG2 in Fisher 344 rats. Additionally, pharmacokinetics showed that L56A and sTEM8 exhibit advantages over sCMG2 with better lung-targeting and longer plasma retention time, which may contribute to their enhanced protective ability in vivo. Our results suggest that receptor decoys based on TEM8 are promising anthrax toxin inhibitors and, together with the pharmacokinetic studies in this report, may contribute to the development of novel anthrax drugs.  相似文献   

4.
Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA), a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2) protein and tumor endothelial marker 8 (TEM8). Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET) high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein-protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication.  相似文献   

5.
Anthrax toxin, which is released from the Gram-positive bacterium Bacillus anthracis, is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA binds a receptor on the surface of the target cell and further assembles into a homo-heptameric pore through which EF and LF translocate into the cytosol. Two distinct cellular receptors for anthrax toxin, TEM8/ANTXR1 and CMG2/ANTXR2, have been identified, and it is known that their extracellular domains bind PA with low and high affinities, respectively. Here, we report the crystal structure of the TEM8 extracellular vWA domain at 1.7 Å resolution. The overall structure has a typical integrin fold and is similar to that of the previously published CMG2 structure. In addition, using structure-based mutagenesis, we demonstrate that the putative interface region of TEM8 with PA (consisting of residues 56, 57, and 154–160) is responsible for the PA-binding affinity differences between the two receptors. In particular, Leu56 was shown to be a key factor for the lower affinity of TEM8 towards PA compared with CMG2. Because of its high affinity for PA and low expression in normal tissues, an isolated extracellular vWA domain of the L56A TEM8 variant may serve as a potent antitoxin and a potential therapeutic treatment for anthrax infection. Moreover, as TEM8 is often over-expressed in tumor cells, our TEM8 crystal structure may provide new insights into how to design PA mutants that preferentially target tumor cells.  相似文献   

6.
CMG2-Fc is a fusion protein composed of the extracellular domain of capillary morphogenesis protein 2 (CMG2) and the Fc region of human immunoglobulin G; CMG2-Fc neutralizes anthrax toxin and offers protection against Bacillus anthracis challenge. To enhance the efficacy of CMG2-Fc against anthrax toxin, we attempted to engineer a CMG2-Fc with an improved affinity for PA. Using the automatic design algorithm FoldX and visual inspection, we devised two CMG2-Fc variants that introduce mutations in the CMG2 binding interface and improve the computationally assessed binding affinity for PA. An experimental affinity assay revealed that the two variants showed increased binding affinity, and in vitro and in vivo toxin neutralization testing indicated that one of these mutants (CMG2-Fc(E117Q)) has superior activity against anthrax toxin and was suitable for further development as a therapeutic agent for anthrax infections. This study shows that the computational design of the PA binding interface of CMG2 to obtain CMG2-Fc variants with improving anti-toxin abilities is viable. Our results demonstrate that computational design can be further applied to generate other CMG2-Fc mutants with greatly improved therapeutic efficacy.  相似文献   

7.
Anthrax toxin, a three-component protein toxin secreted by Bacillus anthracis, assembles into toxic complexes at the surface of receptor-bearing eukaryotic cells. The protective antigen (PA) protein binds to receptors, either tumor endothelial cell marker 8 (TEM8) or CMG2 (capillary morphogenesis protein 2), and orchestrates the delivery of the lethal and edema factors into the cytosol. TEM8 is reported to be overexpressed during tumor angiogenesis, whereas CMG2 is more widely expressed in normal tissues. To extend prior work on targeting of tumor with modified anthrax toxins, we used phage display to select PA variants that preferentially bind to TEM8 as compared with CMG2. Substitutions were randomly introduced into residues 605-729 of PA, within the C-terminal domain 4 of PA, which is the principal region that contacts receptor. Candidates were characterized in cellular cytotoxicity assays with Chinese hamster ovary (CHO) cells expressing either TEM8 or CMG2. A PA mutant having the substitutions R659S and M662R had enhanced specificity toward TEM8-overexpressing CHO cells. This PA variant also displayed broad and potent tumoricidal activity to various human tumor cells, especially to HeLa and A549/ATCC cells. By contrast, the substitution N657Q significantly reduced toxicity to TEM8 but not CMG2-overexpressing CHO cells. Our results indicate that certain amino acid substitutions within PA domain 4 create anthrax toxins that selectively kill human tumor cells. The PA R659S/M662R protein may be useful as a therapeutic agent for cancer treatment.  相似文献   

8.
Gao M  Schulten K 《Biophysical journal》2006,90(9):3267-3279
Protective antigen (PA) is the anthrax toxin protein recognized by capillary morphogenesis gene 2 (CMG2), a transmembrane cellular receptor. Upon activation, seven ligand-receptor units self-assemble into a heptameric ring-like complex that becomes endocytozed by the host cell. A critical step in the subsequent intoxication process is the formation and insertion of a pore into the endosome membrane by PA. The pore conversion requires a change in binding between PA and its receptor in the acidified endosome environment. Molecular dynamics simulations totaling approximately 136 ns on systems of over 92,000 atoms were performed. The simulations revealed how the PA-CMG2 complex, stable at neutral conditions, becomes transformed at low pH upon protonation of His-121 and Glu-122, two conserved amino acids of the receptor. The protonation disrupts a salt bridge important for the binding stability and leads to the detachment of PA domain II, which weakens the stability of the PA-CMG2 complex significantly, and subsequently releases a PA segment needed for pore formation. The simulations also explain the great strength of the PA-CMG2 complex achieves through extraordinary coordination of a divalent cation.  相似文献   

9.
目的:构建炭疽受体CMG2和人IgG1 Fc片段融合基因载体,转染CHO细胞并通过毒素中和试验检测CMG2-Fc拮抗炭疽毒素(PA+LF)的能力。方法:将含有CMG2胞外区1-217AA片度基因和人IgG1的Fc片段基因共同连接入pcDNA3.1载体转染CHO细胞并筛选高表达CMG2-Fc的CHO细胞系,通过小鼠RAW264.7巨噬细胞保护试验检测CMG2-Fc拮抗炭疽毒素的能力。结果:获得了表达CMG2-Fc的细胞株,毒素中和实验显示该蛋白可以有效抑制炭疽毒素引起的细胞损伤。结论:CMG2-Fc能够保护小鼠巨噬细胞免受炭疽毒素攻击,提示其可以作为抗毒素治疗炭疽感染。  相似文献   

10.
目的:构建炭疽受体CMG2和人IgGl Fc片段融合基因载体,转染CHO细胞并通过毒素中和试验检测CMG2-Fc拮抗炭疽毒素(PA+LF)的能力。方法-将含有CMG2胞外区1-217AA片度基因和人IgGl的Fc片段基因共同连接入pcDNA3.1载体转染CHO细胞并筛选高表达CMG2-Fc的CHO细胞系,通过小鼠RAW264.7巨噬细胞保护试验检测CMG2-Fc拮抗炭疽毒素的能力。结果:获得了表达CMG2-Fc的细胞株,毒素中和实验显示该蛋白可以有效抑制炭疽毒素引起的细胞损伤。结论:CMG2-Fc能够保护小鼠巨噬细胞免受炭疽毒素攻击,提示其可以作为抗毒素治疗炭疽感染。  相似文献   

11.
Cellular receptors can act as molecular switches, regulating the sensitivity of microbial proteins to conformational changes that promote cellular entry. The activities of these receptor-based switches are only partially understood. In this paper, we sought to understand the mechanism that underlies the activity of the ANTXR2 anthrax toxin receptor-based switch that binds to domains 2 and 4 of the protective antigen (PA) toxin subunit. Receptor-binding restricts structural changes within the heptameric PA prepore that are required for pore conversion to an acidic endosomal compartment. The transfer cross-saturation (TCS) NMR approach was used to monitor changes in the heptameric PA-receptor contacts at different steps during prepore-to-pore conversion. These studies demonstrated that receptor contact with PA domain 2 is weakened prior to pore conversion, defining a novel intermediate in this pathway. Importantly, ANTXR2 remained bound to PA domain 4 following pore conversion, suggesting that the bound receptor might influence the structure and/or function of the newly formed pore. These studies provide new insights into the function of a receptor-based molecular switch that controls anthrax toxin entry into cells.  相似文献   

12.
Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis.  相似文献   

13.
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.  相似文献   

14.
使用分泌型表达载体,实现了重组炭疽毒素受体胞外区 (rATR(CMG2)-EXCELL) 在毕赤酵母 KM71H 培养物上清中的分泌表达 . 表达量约占培养物上清总蛋白质的 20%. 经过螯合柱初步纯化,每升诱导培养物可获得约 1 mg 电泳纯的 rATR(CMG2)-EXCELL. 体外与配基 PA 结合试验和细胞保护试验显示, rATR(CMG2)-EXCELL 具有很好的生物活性 . rATR(CMG2)-EXCELL 的成功表达为今后研究炭疽毒素受体的作用机理、发展新型炭疽治疗药物打下基础 .  相似文献   

15.
Wei W  Lu Q  Chaudry GJ  Leppla SH  Cohen SN 《Cell》2006,124(6):1141-1154
Toxins produced by Bacillus anthracis and other microbial pathogens require functions of host cell genes to yield toxic effects. Here we show that low density lipoprotein receptor-related protein 6 (LRP6), previously known to be a coreceptor for the Wnt signaling pathway, is required for anthrax toxin lethality in mammalian cells. Downregulation of LRP6 or coexpression of a truncated LRP6 dominant-negative peptide inhibited cellular uptake of complexes containing the protective antigen (PA) carrier of anthrax toxin moieties and protected targeted cells from death, as did antibodies against epitopes in the LRP6 extracellular domain. Fluorescence microscopy and biochemical analyses showed that LRP6 enables toxin internalization by interacting at the cell surface with PA receptors TEM8/ATR and/or CMG2 to form a multicomponent complex that enters cells upon PA binding. Our results, which reveal a previously unsuspected biological role for LRP6, identify LRP6 as a potential target for countermeasures against anthrax toxin lethality.  相似文献   

16.
The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin.  相似文献   

17.
The virulence of Bacillus anthracis is critically dependent on the cytotoxic components of the anthrax toxin, lethal factor (LF) and edema factor (EF). LF and EF gain entry into host cells through interactions with the protective antigen (PA), which binds to host cellular receptors such as CMG2. Antibodies that neutralize PA have been shown to confer protection in animal models and are undergoing intense clinical development. A murine monoclonal antibody, 14B7, has been reported to interact with domain 4 of PA (PAD4) and block its binding to CMG2. More recently, the 14B7 antibody was used as the platform for the selection of very high affinity, single-chain antibodies that have tremendous potential as a combination anthrax prophylactic and treatment. Here, we report the high-resolution X-ray structures of three high-affinity, single-chain antibodies in the 14B7 family; 14B7 and two high-affinity variants 1H and M18. In addition, we present the first neutralizing antibody-PA structure, M18 in complex with PAD4 at 3.8 Å resolution. These structures provide insights into the mechanism of neutralization, and the effect of various mutations on antibody affinity, and enable a comparison between the binding of the M18 antibody and CMG2 with PAD4.  相似文献   

18.
The major immunogenic component of the current anthrax vaccine, anthrax vaccine adsorbed (AVA) is protective antigen (PA). We have shown recently that the thermodynamic stability of PA can be significantly improved by binding to the Von‐Willebrand factor A (VWA) domain of capillary morphogenesis protein 2 (CMG2), and improvements in thermodynamic stability may improve storage and long‐term stability of PA for use as a vaccine. In order to understand the origin of this increase in stability, we have isolated the receptor binding domain of PA, domain 4 (D4), and have studied the effect of the addition of CMG2 on thermodynamic stability. We are able to determine a binding affinity between D4 and CMG2 (~300 nM), which is significantly weaker than that between full‐length PA and CMG2 (170–300 pM). Unlike full‐length PA, we observe very little change in stability of D4 on binding to CMG2, using either fluorescence or 19F‐NMR experiments. Because in previous experiments we could observe a stabilization of both domain 4 and domain 2, the mechanism of stabilization of PA by CMG2 is likely to involve a mutual stabilization of these two domains.  相似文献   

19.
Protective antigen (PA) of anthrax toxin binds cellular receptors and forms pores in target cell membranes, through which catalytic lethal factor (LF) and edema factor (EF) are believed to translocate to the cytoplasm. Using patch clamp electrophysiological techniques, we assayed pore formation by PA in real time on the surface of cultured cells. The membranes of CHO-K1 cells treated with activated PA had little to no electrical conductivity at neutral pH (7.3) but exhibited robust mixed ionic currents in response to voltage stimuli at pH 5.3. Pore formation depended on specific cellular receptors and exhibited voltage-dependent inactivation at large potentials (>60 mV). The pH requirement for pore formation was receptor-specific as membrane insertion occurs at significantly different pH values when measured in cells specifically expressing tumor endothelial marker 8 (TEM8) or capillary morphogenesis protein 2 (CMG2), the two known cellular receptors for anthrax toxin. Pores were inhibited by an N-terminal fragment of LF and by micromolar concentrations of tetrabutylammonium ions. These studies demonstrated basic biophysical properties of PA pores in cell membranes and served as a foundation for the study of LF and EF translocation in vivo.  相似文献   

20.
Interactions between anthrax toxin receptors and protective antigen   总被引:8,自引:0,他引:8  
Since the anthrax mail attacks of 2001, much has been learned about the interactions between anthrax toxin and its receptors. Two distinct cellular receptors for anthrax toxin have been identified and are designated capillary morphogenesis protein 2 (CMG2) and anthrax toxin receptor/tumor endothelial marker 8 (ATR/TEM8). The molecular details of the toxin-receptor interactions have been revealed through crystallographic, biochemical and genetic studies. In addition, a novel pathway by which anthrax toxin enters cells is starting to be uncovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号