首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Huang  Y.  Wong  P.T.W. 《Plant and Soil》1998,203(1):103-108
A rifampicin-resistant isolate of Burkholderia (Pseudomonas) cepacia (A3R) reduced crown rot (Fusarium graminearum Group 1) symptoms significantly (P 0.05) in wheat in glasshouse and field experiments and increased grain yield significantly (P 0.05) in one of two field experiments. In glasshouse experiments, applying the bacteria as a soil drench (2.5 × 109 cfu/g soil) was more effective than coating the bacteria on wheat seed (3.4 × 107cfu/seed). In field experiments, the bacteria were applied as a soil drench at the rate of 1.8 x 1010 cfu/m row. In both the glasshouse and the field, disease severity in the bacteria-inoculated treatments was significantly less in a silt loam than in a sandy loam. The silt loam had a large proportion of fine clay and silt particles (51.7%), which may have favoured the biocontrol activity and survival of the introduced B. cepacia. In a glasshouse experiment, control by B. cepacia was significantly greater in the silt loam than in the sandy loam, which in turn was greater than in a loamy sand. The loamy sand appeared to favour crown rot development but not the activity or survival of the bacterial antagonist. The latter was reflected by the relative populations of the rifampicin-resistant bacteria re-isolated from the various soils during a 5-week period after application of the bacteria (silt loam > sandy loam > loamy sand). This study further confirms that soil type can influence the populations and the level of biocontrol activity of some bacterial antagonists.  相似文献   

2.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

3.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

4.
Abstract After the introduction of Rhizobium leguminosarum biovar trifolii into natural loamy sand and silt loam, bacterial numbers increased only directly after inoculation. Thereafter, bacterial numbers decreased until an equilibrium was reached. This decrease was exponential on a log scale and could be described by the function Y = A + B − R ', where Y is the log number of rhizobial cells at time: T ; A represents the lgo of the final population size; B is the difference between the log (initial number of bacteria) and A ; R is the daily reduction factor of Y−A and t is time in days after inoculation. The final population sizes increased with increasing inoculum densities (104−108 bacteria/g soil). In sterilized soil, however, the populations increased up to an equilibrium, which was not affected by the inoculum density.
The final population sizes were higher in silt loam than in loamy sand in natural, as well as in sterilized soil. The final population size was reached earlier in natural silt loam than in loamy sand. Also the growth rate in sterilized soil was higher in silt loam than in loamy sand. The growth rate of low inoculum densities in silt loam was exponential and approximately the same as in yeast extract mannitol broth. The growth rate in loamy sand could be improved by incresing the bulk density of the soil from 1.0 to 1.4 g/cm3.  相似文献   

5.
Abstract Transfer of plasmid RP4p from introduced Pseudomonas fluorescens to a co-introduced recipient strain or to members of the indigenous bacterial population was studied in four different soils of varying texture planted with wheat. Donor and recipient strains showed good survival in the four soils throughout the experiment. The numbers of transconjugants found in donor and recipient experiments in two soils, Ede loamy sand and Löss silt loam were significantly higher in the rhizosphere than in corresponding bulk soil. In the remaining two soils, Montrond and Flevo silt loam, transconjugant numbers were not significantly higher in the rhizosphere than in the bulk soil.
The combined utilization of a specific bacteriophage eliminate the donor strain and the pat sequence as a specific marker to detect RP4p was found to be very efficient in detecting indigenous transconjugants under various environmental conditions. The numbers of indigenous transconjugants were consistently higher in rhizosphere than bull soil. A significant rhizosphere effect on transconjugant numbers of transconjugants were recovered from Flevo and Montrond silt loam; these soils possess characteristics such as clay or organic matter contents which may be favorable to conjugation.  相似文献   

6.
Abstract Antibiotic-resistant strains of Pseudomonas fluorescens and Bacillus subtilis , produced by transposon Tn5 mutagenesis and transformation with plasmid pFT30, respectively, were characterized. Both strains grew at a rate comparable to that of the wild-type strains, and the antibiotic resistance remained stable for over 50 generations without selective pressure. During the growing season, the survival of these strains was studied in two soils of different texture cropped with wheat. The B. subtilis populations declined rapidly in both soils and then stabilized at the levels of added spores. P. fluorescens showed a slow, steady decline in both soils; survival was better in the finer-textured soil, a silt loam, than in the coarser loamy sand. For both bacteria, some translocation to deeper soil layers was observed. No significant rhizosphere effects were detected in either of the two soils.  相似文献   

7.
We investigated the survival, cell length, and development of general stress resistance in populations of Pseudomonas fluorescens R2f and its rifampin-resistant mutant, R2f Rpr, following exposure to carbon starvation conditions in liquid cultures and residence in two different soils, Flevo silt loam (FSL) and Ede loamy sand (ELS). In much the same way as was recently shown for P. putida KT2442, carbon-starved P. fluorescens R2f populations revealed enhanced resistance to otherwise lethal treatments, such as exposure to ethanol, high temperature, osmotic tension, and oxidative stress. A large population of nonculturable P. fluorescens R2f Rpr cells arose shortly after their introduction into ELS soil, whereas the formation of nonculturable cells was not observed in FSL soil. Also, the inoculant cell (based on immunofluorescence) and CFU counts decreased faster in ELS soil than in FSL soil. Introduction of carbon-starved instead of exponential-growth-phase R2f Rpr cells into ELS soil did not affect bacterial survival. The inoculant cell length decreased in soil, and no large differences in cell length in the two soil types were observed. Addition of glucose to ELS soil resulted in a stable cell length of R2f Rpr cells, whereas carbon-starved cells introduced into ELS soil remained small. Exponentially growing R2f Rpr cells developed enhanced resistance to ethanol, high temperature, osmotic tension, and oxidative stress within 1 day in both soils, whereas cells introduced into ELS soil amended with glucose showed decreased resistance. Cells that were carbon starved prior to introduction into ELS soil showed unchanged stress resistance levels upon residence in soil.  相似文献   

8.
Gill  J. S.  Sivasithamparam  K.  Smettem  K. R. J. 《Plant and Soil》2000,221(2):113-120
The effect of different soil textures, sandy (97.5% sand, 1.6% silt, 0.9% clay), loamy sand (77% sand, 11% silt, 12% clay) and a sandy clay loam (69% sand, 7% silt, 24% clay), on root rot of wheat caused by Rhizoctonia solani Kühn Anastomosis Group (AG) 8 was studied under glasshouse conditions. The reduction in root and shoot biomass following inoculation with AG-8 was greater in sand than in loamy sand or sandy clay loam. Dry root weight of wheat in the sand, loamy sand and sandy clay loam soils infested with AG-8 was 91%, 55% and 28% less than in control uninfested soils. There was greater moisture retention in the loamy sand and sandy clay loam soils as compared to the sand in the upper 10–20 cm. Root penetration resistance was greater in loamy sand and sandy clay loam than in sand. Root growth in the uninfested soil column was faster in the sand than in the loamy sand and sandy clay loam soils, the roots in the sandy soil being thinner than in the other two soils. Radial spread of the pathogen in these soils in seedling trays was twice as fast in the sand in comparison to the loamy sand which in turn was more than twice that in the sandy clay loam soil. There was no evidence that differences among soils in pathogenicity or soil spread of the pathogen was related to their nutrient status. This behaviour may be related to the severity of the disease in fields with sandy soils as compared to those with loam or clay soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

10.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

11.
The effects of kanamycin and streptomycin added to soil on the survival of transposon Tn5 modified Pseudomonas fluorescens strain R2f were investigated. Kanamycin in high (180 g g-1 dry soil) or low (18 g g-1) concentration or streptomycin in low concentration in Ede loamy sand soil had no noticeable effect on inoculant population dynamics in soil and wheat rhizosphere, whereas streptomycin in high concentration had a consistent significant stimulatory effect, in particular in the wheat rhizosphere. Streptomycin exerted its effect by selecting P. fluorescens with Tn5 insertion whilst suppressing the unmodified sensitive parent strain, as evidenced by comparing the behaviour of these two strains in separate and mixed inoculation studies.Soil textural type influenced the effect of streptomycin on the Tn5 carrying inoculant; the effect was consistently detected in rhizosphere and rhizoplane samples of wheat grown in Ede loamy sand after 7 and 14 days incubation, whereas it was only apparent after 7 days in rhizoplane or rhizosphere (and bulk soil) samples of wheat grown in two silt loam soils. Modification of soil pH by the addition of CaCO3 or bentonite clay resulted in an enhancement of the selective effect of streptomycin by CaCO3 and its abolishment by bentonite clay.The addition to soil of malic acid or wheat root exudate, but not of glucose, enhanced the streptomycin selective effect on the Tn5-modified P. fluorescens strain. Neither the streptomycin producer Streptomyces griseus nor two non-inhibiting mutants obtained following UV irradiation affected the dynamics of P. fluorescens (chr::Tn5) in soil and wheat rhizosphere.The effect of streptomycin in soil on inoculant Tn5 carrying bacteria depends on conditions such as soil type, the presence of (wheat) root exudates and the type of available substrate.  相似文献   

12.
Abstract Transfer of plasmid RP4 between introduced strains of Pseudomonas fluorescens was studied in 2 soils, Ede loamy sand and Guelph loam, in non-rhizosphere and rhizosphere soil using soil chambers and microcosm systems. Short-term organism survival was generally at high levels (> 106/g dry soil), in both soils, whereas long-term survival was poorer, particularly in the loamy sand. Amendment of this soil with bentonite clay improved bacterial survival. Plasmid transfer between donor and recipient strains freshly introduced into separate portions of Ede loamy sand, which were subsequently mixed, was only detected in the vicinity of growing wheat roots, suggesting roots stimulate bacterial migration and/or growth. However, no transfer was detected between resident donor and recipient cell populations (introduced 48 days previously), due to poor organism survival. Plasmid transfer was detected in the rhizosphere between established, resident donor cell populations, and newly-introduced recipients, and vice-versa, in both soils. These data suggested that plant roots enhance the frequency of bacterial matings not only between organisms present in the same niches, but also between organisms from different niches, or in different conditions of stress, probably by stimulating bacterial migration and/or growth, or by providing additional surfaces for cell-to-cell contact.  相似文献   

13.
The hypothesis that the population size of introduced bacteria is affected by habitable pore space was studied by varying moisture content and bulk density in sterilized, as well as in natural loamy sand and silt loam. The soils were inoculated withRhizobium leguminosarum biovartrifolii and established and maintained at soil water potentials between –5 and –20 kPa (pF 1.7 and 2.3). Rhizobial cells were enumerated when population sizes were expected to be more or less stable. In sterilized soils, the rhizobial numbers were not affected or decreased only slightly when water potentials increased from –20 to –5 kPa. In natural soils, the decrease in rhizobial numbers with increasing water potentials was more pronounced. Bulk density had only minor effects on the population sizes of rhizobia or total bacteria. Soil water retention curves of both soils were used to calculate volume and surface area of pores from different diameter classes, and an estimation of the habitable pore space was made. Combining these values of the theoretical habitable pore space with the measured rhizobial numbers showed that only 0.37 and 0.44% of the habitable pore space was occupied in the sterilized loamy sand and silt loam, respectively. The situation in natural soil is more complicated, since a whole variety of microorganisms is present. Nevertheless, it was suggested that, in general, pore space does not limit proliferation and growth of soil microorganisms.  相似文献   

14.
A small microcosm, based on optimized in vitro transformation conditions, was used to study the ecological factors affecting the transformation of Acinetobacter calcoaceticus BD413 in soil. The transforming DNA used was A. calcoaceticus homologous chromosomal DNA with an inserted gene cassette containing a kanamycin resistance gene, nptII. The effects of soil type (silt loam or loamy sand), bacterial cell density, time of residence of A. calcoaceticus or of DNA in soil before transformation, transformation period, and nutrient input were investigated. There were clear inhibitory effects of the soil matrix on transformation and DNA availability. A. calcoaceticus cells reached stationary phase and lost the ability to be transformed shortly after introduction into sterile soil. The use of an initially small number of A. calcoaceticus cells and nutrients, resulting in bacterial growth, enhanced transformation frequencies within a limited period. The availability of introduced DNA for transformation of A. calcoaceticus cells disappeared within a few hours in soil. Differences in transformation frequencies between soils were found; A. calcoaceticus cells were transformed at a higher rate and for a longer period in a silt loam than in a loamy sand. Physical separation of DNA and A. calcoaceticus cells had a negative effect on transformation. Transformation was also detected in nonsterile soil microcosms, albeit only in the presence of added nutrients and at a reduced frequency. These results suggest that chromosomal DNA released into soil rapidly becomes unavailable for transformation of A. calcoaceticus. In addition, strain BD413 quickly loses the ability to receive, stabilize, and/or express exogenous DNA after introduction into soil.  相似文献   

15.
Manuring of arable soils may stimulate the spread of resistance genes by introduction of resistant populations and antibiotics. We investigated effects of pig manure and sulfadiazine (SDZ) on bacterial communities in soil microcosms. A silt loam and a loamy sand were mixed with manure containing SDZ (10 or 100 mg per kilogram of soil), and compared with untreated soil and manured soil without SDZ over a 2-month period. In both soils, manure and SDZ positively affected the quotients of total and SDZ-resistant culturable bacteria [most probable number (MPN)], and transfer frequencies of plasmids conferring SDZ resistance in filter matings of soil bacteria and an Escherichia coli recipient. Detection of sulfonamide resistance genes sul1, sul2 and sul3 in community DNA by polymerase chain reaction (PCR) and hybridization revealed a high prevalence of sul1 in manure and manured soils, while sul2 was mainly found in the loamy sand treated with manure and high SDZ amounts, and sul3 was not detected. By PCR quantification of sul1 and bacterial rrn genes, a transient effect of manure alone and a long-term effect of SDZ plus manure on absolute and relative sul1 abundance in soil was shown. The dynamics in soil of class 1 integrons, which are typically associated with sul1, was analysed by amplification of the gene cassette region. Integrons introduced by manure established in both soils. Soil type and SDZ affected the composition of integrons. The synergistic effects of manure and SDZ were still detectable after 2 months. The results suggest that manure from treated pigs enhances spread of antibiotic resistances in soil bacterial communities.  相似文献   

16.
We tested the effect of soil type on the performance of the entomopathogenic pathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Soil types used were loamy sand, sandy loam, loam, silt loam, clay loam, acidic sand, and a highly organic potting mix. Infectivity was tested by exposing third-instar Anomala orientalis or Popillia japonica to nematodes in laboratory and greenhouse experiments and determining nematode establishment in the larvae and larval mortality. Infectivity of H. bacteriophora and H. zealandica was the highest in potting mix, did not differ among loamy sand and the loams, and was the lowest in acidic sand. Infectivity of S. glaseri was significantly lower in acidic sand than in loamy sand in a laboratory experiment but not in a greenhouse experiment, and did not differ among the other soils. Infectivity of S. scarabaei was lower in silt loam and clay loam than in loamy sand in a greenhouse experiment but not in a laboratory experiment, but was the lowest in acidic sand and potting mix. Persistence was determined in laboratory experiments by baiting nematode-inoculated soil with Galleria mellonella larvae. Persistence of both Heterorhabditis spp. and S. glaseri was the shortest in potting mix and showed no clear differences among the other substrates. Persistence of S. scarabaei was high in all substrates and its recovery declined significantly over time only in clay loam. In conclusion, generalizations on nematode performance in different soil types have to be done carefully as the effect of soil parameters including soil texture, pH, and organic matter may vary with nematode species.  相似文献   

17.
The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.  相似文献   

18.
To elucidate the biological significance of dead bacterial cells in soil to the intra- and interspecies transfer of gene fragments by natural transformation, we have exposed the kanamycin-sensitive recipient Acinetobacter sp. strain BD413(pFG4) to lysates of the kanamycin-resistant donor bacteria Acinetobacter spp., Pseudomonas fluorescens, and Burkholderia cepacia. Detection of gene transfer was facilitated by the recombinational repair of a partially (317 bp) deleted kanamycin resistance gene in the recipient bacterium. The investigation revealed a significant potential of these DNA sources to transform Acinetobacter spp. residing both in sterile and in nonsterile silt loam soil. Heat-treated (80 degrees C, 15 min) cell lysates were capable of transforming strain BD413 after 4 days of incubation in sterile soil and for up to 8 h in nonsterile soil. Transformation efficiencies obtained in vitro and in situ with the various lysates were similar to or exceeded those obtained with conventionally purified DNA. The presence of cell debris did not inhibit transformation in soil, and the debris may protect DNA from rapid biological inactivation. Natural transformation thus provides Acinetobacter spp. with an efficient mechanism to access genetic information from different bacterial species in soil. The relatively short-term biological activity (e.g., transforming activity) of chromosomal DNA in soil contrasts the earlier reported long-term physical stability of DNA, where fractions have been found to persist for several weeks in soil. Thus, there seems to be a clear difference between the physical and the functional significance of chromosomal DNA in soil.  相似文献   

19.
Abstract Kanamycin (Km)-resistant bacterial populations in different soil, river water, sewage and pig manure slurry samples were enumerated and their prevalence in the total populations determined. About 350 Km-resistant Gram-negative colonies grown in the presence of kanamycin were identified using a rapid presumptive identification scheme. They were then screened for the presence of Tn5 and npt II sequences using hybridization of cells in dot blots, of Southern-blotted genomic DNA extracts and of PCR amplification products. Colonies reacting positively with a 2.7 kb probe of the central region of Tn5, or with a 925 bp npt II specific probe were primarily obtained from sewage samples, whereas fewer were obtained from pig manure slurry, river water and soil. However, in soil samples bacteria containing Tn5 or npt II were not found. Transposon Tn5 carrying the npt II gene could be unequivocally demonstrated in 3 isolates from sewage, identified as Aeromonas spp. (2x) and Escherichia coli . Hin dIII digests of chromosomal DNA obtained from these strains were cloned and shown to confer Km resistance to a sensitive E. coli strain. Further, various strains revealed the presence of npt II homologous sequences in a non-Tn5 background. The occurence of Tn5 and npt II in the samples was also assessed via PCR analysis of total community DNA extracts obtained from the aforementioned environmental samples. Evidence for the occurence of npt II was obtained for sewage, pig manure slurry, for 2 (out of 3) river water (Avon, Rhine) and 3 (out of 6) soil (Flevo silt loam, Westmaas silt loam, Ahlum rhizosphere) samples. Tn5 was not detectable via PCR in any of these environmental DNA extracts but it was found in Ede loamy sand and Flevo silt loam samples taken from a field microplot 2 and 4 weeks after release of a Tn5-containing genetically modified organism.  相似文献   

20.
Abstract: Possible effects on the physiological activity and culturability of soil microorganisms by different soil dispersion procedures, and effects on activity caused by extracting bacteria from soil, were investigated. There was no apparent difference in cfu's with dispersion of a silty loam soil and a loamy sand soil with pyrophosphate as compared to dispersion in NaCl. Substrate-induced respiration was reduced in the silty loam soil, and methanol oxidation was reduced in the loamy sand soil with dispersion in pyrophosphate, and the soil pH was irreversibly increased by the treatment. Extracted bacterial fractions had lower numbers of culturable cells as percentage of the total number of bacteria in each fraction, lower respiration rates and no methanol oxidation activity as compared to the soil slurry both before and after extraction. The physiological activity was apparently not affected by the number of cells extracted. This indicates that the increased extraction rate of indigenous soil bacteria obtained by effective disruption of aggregates and detachment of cells from surfaces, only results in increased extraction of cells that have been physiologically changed as a result of the extraction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号