首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Garlic has been used as a traditional medicine for prevention and treatment of cardiovascular diseases. However, the molecular mechanism of garlic's pharmacological action has not been clearly elucidated. We examined here the effect of garlic extract and its major component, S-allyl cysteine (SAC), on nitric oxide (NO) production by macrophages and endothelial cells. The present study demonstrates that these reagents inhibited NO production through the suppression of iNOS mRNA and protein expression in the murine macrophage cell line RAW264.7, which had been stimulated with LPS and IFNgamma. The garlic extract also inhibited NO production in peritoneal macrophages, rat hepatocytes, and rat aortic smooth muscle cells stimulated with LPS plus cytokines, but it did not inhibit NO production in iNOS-transfected AKN-1 cells or iNOS enzyme activity. These reagents suppressed NF-kappaB activation and murine iNOS promoter activity in LPS and IFNgamma-stimulated RAW264.7 cells. In contrast, these reagents significantly increased cGMP production by eNOS in HUVEC without changes in activity, protein levels, and cellular distribution of eNOS. Finally, garlic extract and SAC both suppressed the production of hydroxyl radical, confirming their antioxidant activity. These data demonstrate that garlic extract and SAC, due to their antioxidant activity, differentially regulate NO production by inhibiting iNOS expression in macrophages while increasing NO in endothelial cells. Thus, this selective regulation may contribute to the anti-inflammatory effect and prevention of atherosclerosis by these reagents.  相似文献   

2.
3.
4.
Inflammation is a system used by a host to defend against the presence of bacteria, viruses, or yeasts. Toll-like receptors (TLRs) in the plasma membranes of macrophages are activated when they recognize the molecular structure of a virus or bacterium. Lipopolysaccharide (LPS), an outer cell-wall component of Gram-negative bacteria, initiates an inflammatory process via TLR4. We investigated the effect of the extract of Anethum graveloens flowers (AGFs) on LPS-mediated inflammation in RAW 264.7 cells. The extract markedly suppressed nitric oxide generation in a concentration-dependent manner in LPS-stimulated RAW 264.7 cells. It inhibited inducible nitric oxide synthase (iNOS) and the mRNA expression of cytokines such as interleukin-1 beta and interleukin-6 in LPS-stimulated RAW 264.7 cells. It also inhibited iNOS protein levels in LPS-stimulated RAW 264.7 cells. In addition, AGF decreased the LPS-induced phosphorylation of mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. AGF inhibited the phosphorylation of Akt, an upstream molecule of the nuclear factor kappa B (NF-κB) pathway, and thus inhibited NF-κB activity in LPS-stimulated RAW 264.7 cells. These results suggest that AGF exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells by inhibiting iNOS expression and blocking the NF-κB pathway.  相似文献   

5.
6.
Inflammation is a system used by a host to defend against the presence of bacteria, viruses, or yeasts. Toll-like receptors (TLRs) in the plasma membranes of macrophages are activated when they recognize the molecular structure of a virus or bacterium. Lipopolysaccharide (LPS), an outer cell-wall component of Gram-negative bacteria, initiates an inflammatory process via TLR4. We investigated the effect of the extract of Anethum graveloens flowers (AGFs) on LPS-mediated inflammation in RAW 264.7 cells. The extract markedly suppressed nitric oxide generation in a concentration-dependent manner in LPS-stimulated RAW 264.7 cells. It inhibited inducible nitric oxide synthase (iNOS) and the mRNA expression of cytokines such as interleukin-1 beta and interleukin-6 in LPS-stimulated RAW 264.7 cells. It also inhibited iNOS protein levels in LPS-stimulated RAW 264.7 cells. In addition, AGF decreased the LPS-induced phosphorylation of mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. AGF inhibited the phosphorylation of Akt, an upstream molecule of the nuclear factor kappa B (NF-κB) pathway, and thus inhibited NF-κB activity in LPS-stimulated RAW 264.7 cells. These results suggest that AGF exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells by inhibiting iNOS expression and blocking the NF-κB pathway.  相似文献   

7.
In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-kappaB (NF-kappaB) and CCAAT/enhancer-binding protein beta (C/EBPbeta), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPbeta DNA-binding activity and NF-kappaB activation.  相似文献   

8.
Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are involved in various pathophysiological processes such as inflammation and carcinogenesis. In a search for inhibitors of COX-2 and iNOS production we found that extracts of Stewartia koreana strongly inhibited NO and PGE2 production in LPS-treated macrophage RAW 264.7 cells. We have now shown that the mRNA and protein levels of iNOS and COX-2 are reduced by the Stewartia koreana extract (SKE). SKE inhibited expression of an NF-kappaB reporter gene in response to LPS, and gel mobility shift assays revealed that SKE reduced NF-kappaB DNA-binding activity. The extract also inhibited LPS-induced phosphorylation of IkappaB-alpha and nuclear translocation of p65. Administration of the extract reduced the symptoms of arthritis in a collagen-induced arthritic mouse model. These results indicate that Stewartia extracts contain potentially useful agents for preventing and treating inflammatory diseases.  相似文献   

9.
10.
目的研究草木犀石油醚提取物在体外的抗炎作用。方法采用小鼠巨噬细胞系RAW264.7建立炎症细胞模型,加入10μg/L的LPS培养液和不同浓度的草木犀石油醚提取物进行干预。ELISA法检测上清液中TNF-α,IL-1β,IL-6和NO的分泌量;实时荧光定量RT-PCR检测TNF-α,iNOS和COX-2的mRNA表达;Western印迹法检测COX-2蛋白的表达。结果草木犀提取物干预后细胞所分泌的炎性介质(TNF—α,IL-1β,IL-6和NO)与模型组相比均显著降低(P〈0.01),并存在剂量依赖关系;RT-PCR结果显示干预后细胞TNF-α,iNOS和COX-2的mRNA表达水平显著降低(P〈0.01),也存在剂量依赖关系;Western印迹结果显示草木犀石油醚提取物及地塞米松干预后COX-2蛋白水平明显降低(P〈0.01)。结论草木犀的石油醚提取物通过下调LPS诱导的巨噬细胞表达炎性介质而发挥其体外抗炎作用,且其下调作用呈剂量依赖性。  相似文献   

11.
12.
13.
14.
15.
Shyur LF  Huang CC  Lo CP  Chiu CY  Chen YP  Wang SY  Chang ST 《Phytochemistry》2008,69(6):1348-1358
Cryptomeria japonica is an important plantation conifer tree in Asia. This study aimed to characterize the anti-inflammatory and hepatoprotective activities of the phytocompounds from C. japonica wood on LPS- or TPA-induced activation of proinflammatory mediators and CCl(4)-induced acute liver injury in mice. A CJH7-2 fraction was purified from C. japonica extracts following bioactivity-guided fractionation, and it exhibited significant activities on inhibition of NO production and iNOS expression as well as up-regulating HO-1 expression in LPS-stimulated macrophages. CJH7-2 also potently inhibits COX-2 enzymatic activity (IC(50)=5 microg/mL) and TPA-induced COX-2 protein expression in mouse skin (1mg/200 microL/site). CJH7-2 (10 mg/kg BW) can prevent CCl(4)-induced liver injury and aminotransferases activities in mice. Chemical fingerprinting analysis showed that terpenes are the major bioactive compounds in the CJH7-2 fraction. This is the first study to demonstrate that chemical constituents from the wood extract of C. japonica possess anti-inflammatory activities in vitro and in vivo that may play a role in hepatoprotection.  相似文献   

16.
Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti‐inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor‐α (TNF‐α) production in lipopolysaccharides (LPS)‐induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS‐induced NO production and cytokine expression through the activation of nuclear factor‐κB (NF‐κB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC50 value of 2.85 ± 0.62 µM that was due to the significant suppression of LPS‐induced iNOS mRNA expression as well as IL‐1β, IL‐6, and IL‐10 mRNA at a concentration of 6 µM. At the signal transduction level, DB significantly inhibited NF‐κB binding activity, as determined using pNFκB‐Luciferase reporter system, which action resulted from the prevention of IκBα degradation. In addition, DB in the range of 1.5–6 µM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL‐1β, IL‐6, and IL‐10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF‐κB and MAPK/ERK signaling pathway in LPS‐induced RAW264.7 macrophage cells. J. Cell. Biochem. 109: 1057–1063, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Antimicrobial peptide P18 markedly inhibited the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, whereas magainin 2 did not inhibit these activities. P18 dose-dependently reduced nitric oxide (NO) production by LPS-stimulated RAW 264.7 macrophage cells, with complete inhibition at 20 microg P18 ml(-1). In contrast, P18 had no effect on NO production and the expression of iNOS mRNA and iNOS protein by interferon-gamma (IFN-gamma)-stimulated RAW264.7 cells, suggesting P18 selectively inhibits LPS-stimulated inflammatory responses in macrophages. An LAL assay showed that P18 has strong LPS-neutralizing activity, indicating that P18 inhibits the inflammatory responses in LPS-stimulated macrophages by direct binding to LPS. Collectively, our results indicate that P18 has promising therapeutic potential as a novel anti-inflammatory as well as antimicrobial agent.  相似文献   

18.
Cherng SC  Cheng SN  Tarn A  Chou TC 《Life sciences》2007,81(19-20):1431-1435
C-phycocyanin (C-PC), found in blue green algae, is often used as a dietary nutritional supplement. C-PC has been found to have an anti-inflammatory activity and exert beneficial effect in various diseases. However, little is known about its mechanism of action. Overproduction of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) plays an important role in the pathogenesis of inflammation. The aim of this study was to determine whether C-PC inhibits production of nitrite, an index of NO, and iNOS expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results indicated that C-PC significantly inhibited the LPS-induced nitrite production and iNOS protein expression accompanied by an attenuation of tumor necrosis factor-alpha (TNF-alpha) formation but had no effect on interleukin-10 production in macrophages. Furthermore, C-PC also suppressed the activation of nuclear factor-kappaB (NF-kappaB) through preventing degradation of cytosolic IkappaB-alpha in LPS-stimulated RAW 264.7 macrophages. Thus, the inhibitory activity of C-PC on LPS-induced NO release and iNOS expression is probably associated with suppressing TNF-alpha formation and nuclear NF-kappaB activation, which may provide an additional explanation for its anti-inflammatory activity and therapeutic effect.  相似文献   

19.
为研究连翘脂素的抗炎效应及其抗炎机制,以地塞米松作为阳性对照,建立脂多糖(LPS)诱导小鼠巨噬细胞RAW264.7炎症模型,检测炎症因子的释放及相关蛋白和mRNA的表达,以期提高对连翘脂素抗炎作用的全面认识并为连翘脂素临床开发提供有力的科学依据。实验采用Griess法检测细胞上清液中NO含量,ELISA法检测TNF-α和IL-6的含量,Westernblot法检测iNOS、COX-2蛋白的表达,RT-qPCR法检测iNOS、COX-2mRNA的表达。与LPS组比较,连翘脂素组和地塞米松组可以明显降低LPS诱导的RAW264.7细胞释放NO、TNF-α和IL-6的量,并呈现浓度依赖关系。Westrenblot和RT-qPCR结果显示连翘脂素能抑制LPS诱导的iNOS、COX-2的蛋白表达以及mRNA的表达,并呈浓度依赖关系。实验研究表明连翘脂素能够明显抑制LPS诱导的RAW264.7细胞炎症因子的释放,iNOS、COX-2蛋白及mRNA的表达从而抑制炎症反应。  相似文献   

20.
Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of inducible nitric oxide synthesis might contribute to the anti-inflammatory activities of azathioprine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号