首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reactive oxygen species (ROS) contain one or more unpaired electrons and are formed as intermediates in a variety of normal biochemical reactions. However, when generated in excess amounts or not appropriately controlled, ROS initiate extensive cellular damage and tissue injury. ROS have been implicated in the progression of cancer, cardiovascular disease and neurodegenerative and neuroinflammatory disorders, such as multiple sclerosis (MS). In the last decade there has been a major interest in the involvement of ROS in MS pathogenesis and evidence is emerging that free radicals play a key role in various processes underlying MS pathology. To counteract ROS-mediated damage, the central nervous system is equipped with an intrinsic defense mechanism consisting of endogenous antioxidant enzymes. Here, we provide a comprehensive overview on the (sub)cellular origin of ROS during neuroinflammation as well as the detrimental effects of ROS in processing underlying MS lesion development and persistence. In addition, we will discuss clinical and experimental studies highlighting the therapeutic potential of antioxidant protection in the pathogenesis of MS.  相似文献   

2.
Increasing evidence suggests that enhanced production of reactive oxygen species (ROS) activates the MAP kinases, c-Jun N-terminal protein kinase (JNK) and mitogen-activated protein kinase MAPK (p38). These phosphorylated intermediates at the stress-activated pathway induce expression of matrix metalloproteinases (MMPs), leading to inflammatory responses and pathological damages involved in the etiology of multiple sclerosis (MS). Here we report that N-acetylcysteine amide (AD4) crosses the blood-brain barrier (BBB), chelates Cu(2+), which catalyzes free radical formation, and prevents ROS-induced activation of JNK, p38 and MMP-9. In the myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, oral administration of AD4 drastically reduced the clinical signs, inflammation, MMP-9 activity, and protected axons from demylination damages. In agreement with the in vitro studies, we propose that ROS scavenging by AD4 in MOG-treated animals prevented MMP's induction and subsequent damages through inhibition of MAPK pathway. The low toxicity of AD4 coupled with BBB penetration makes this compound an excellent potential candidate for the therapy of MS and other neurodegenerative disorders.  相似文献   

3.
Price TO  Samson WK  Niehoff ML  Banks WA 《Peptides》2007,28(12):2372-2381
Nesfatin-1 has recently been identified as a hypothalamic and brain stem peptide that regulates feeding behavior. Here, we determined the ability of nesfatin-1 to cross the blood–brain barrier (BBB) of mice. We used multiple-regression analysis to determine that radioactively labeled nesfatin-1 injected intravenously entered the brain. The entry rate (Ki) of 131I-nesfatin-1 from blood-to-brain was 0.20 ± 0.02 μl/g min. This modest rate of entry was not inhibited by the administration of nonradioactive nesfatin-1, suggesting that BBB transport of nesfatin-1 into the brain is by a nonsaturable mechanism. High performance liquid chromatography (HPLC) and acid precipitation showed that most of the injected radiolabeled nesfatin-1 reached the brain as intact peptide, and capillary depletion with vascular washout revealed that 67% of 131I-nesfatin-1 crossed the BBB to reach the brain parenchyma. Efflux of labeled nesfatin-1 from brain back into blood was by way of bulk flow. These findings demonstrate that nesfatin-1 crosses the BBB in both the blood-to-brain and brain-to-blood directions by nonsaturable mechanisms.  相似文献   

4.
1. The blood–brain barrier (BBB) protects the brain from circulating xenobiotic agents. The pathophysiology, time span, spatial pattern, and pathophysiological consequences of BBB disruptions are not known.2. Here, we report the quantification of BBB disruption by measuring enhancement levels in computerized tomography brain images.3. Pathological diffuse enhancement associated with elevated albumin levels in the cerebrospinal fluid (CSF) was observed in the cerebral cortex of 28 out of 43 patients, but not in controls. Four patients displayed weeks-long focal BBB impairment. In 19 other patients, BBB disruption was significantly associated with elevated blood pressure, body temperature, serum cortisol, and stress-associated CSF readthrough acetylcholinesterase. Multielectrode electroencephalography revealed enhanced slow-wave activities in areas of focal BBB disruption. Thus, quantification of BBB disruption using minimally invasive procedures, demonstrated correlations with molecular, clinical, and physiological stress-associated indices.4. These sequelae accompany a wide range of neurological disorders, suggesting that persistent, detrimental BBB disruption is considerably more frequent than previously assumed.  相似文献   

5.
Cerebral metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumours. Actual treatment options for brain metastases that include surgical resection, radiotherapy and chemotherapy are rarely curative, although palliative treatment improves survival and life quality of patients carrying brain‐metastatic tumours. Chemotherapy in particular has also shown limited or no activity in brain metastasis of most tumour types. Many chemotherapeutic agents used systemically do not cross the blood–brain barrier (BBB), whereas others may transiently weaken the BBB and allow extravasation of tumour cells from the circulation into the brain parenchyma. Increasing evidence points out that the interaction between the BBB and tumour cells plays a key role for implantation and growth of brain metastases in the central nervous system. The BBB, as the tightest endothelial barrier, prevents both early detection and treatment by creating a privileged microenvironment. Therefore, as observed in several in vivo studies, precise targetting the BBB by a specific transient opening of the structure making it permeable for therapeutic compounds, might potentially help to overcome this difficult clinical problem. Moreover, a better understanding of the molecular features of the BBB, its interrelation with metastatic tumour cells and the elucidation of cellular mechanisms responsible for establishing cerebral metastasis must be clearly outlined in order to promote treatment modalities that particularly involve chemotherapy. This in turn would substantially expand the survival and quality of life of patients with brain metastasis, and potentially increase the remission rate. Therefore, the focus of this review is to summarise the current knowledge on the role and function of the BBB in cancer metastasis.  相似文献   

6.
R Sankar  F R Domer  A J Kastin 《Peptides》1981,2(3):345-347
The effects of intravenously-injected alpha-MSH and MIF-1 (Pro-Leu-Gly-NH2) on the permeability of the blood-brain barrier (BBB) to a large protein and a small anion were studied using radioiodinated serum albumin (RISA) and 99mTc-labeled sodium pertechnetate. The permeability of the BBB to RISA was unaltered by either peptide. Permeability to the inorganic pertechnetate anion, however, was significantly increased by alpha-MSH but not by MIF-1 at doses known to evoke EEG and behavioral responses. The peptides did not cause a change in the systemic blood pressure. It is possible, therefore, that at least some CNS effects of peripherally administered peptides are exerted by alteration of the permeability of the BBB to other substances.  相似文献   

7.
Adult rats anesthesized with pentobarbital and injected intravenously with a mixture of [14C]sucrose and [3H]inulin were exposed for 30 min to an environment at an ambient temperature of 22, 30, or 40 °C, or were exposed at 22 °C to 2450-MHz CW microwave radiation at power densities of 0, 10, 20, or 30 mW/cm2. Following exposure, the brain was perfused and sectioned into eight regions, and the radioactivity in each region was counted. The data were analyzed by two methods. First, the data for each of the eight regions and for each of the two radioactive tracers were analyzed by regression analysis for a total of 16 analyses and Bonferroni's Inequality was applied to prevent false positive results from numerous analyses. By this conservative test, no statistically significant increase in permeation was found for either tracer in any brain region of rats exposed to microwaves. Second, a profile analysis was used to test for a general change in tracer uptake across all brain regions. Using this statistical method, a significant increase in permeation was found for sucrose but not for inulin. A correction factor was then derived from the warm-air experiments to correct for the increase in permeation of the brain associated with change in body temperature. This correction factor was applied to the data for the irradiated animals. After correcting the data for thermal effects of the microwave radiation, no significant increase in permeation was found.  相似文献   

8.
By using two structurally unrelated hydrogen sulfide (H2S) donors 5‐(4‐methoxyphenyl) ‐3H‐1, 2‐dithiole‐3‐thione (ADT) and sodium hydrosulfide (NaHS), this study investigated if H2S protected blood–brain barrier (BBB) integrity following middle cerebral artery occlusion (MCAO). ICR mice underwent MCAO and received H2S donors at 3 h after reperfusion. Infarction, neurological scores, brain edema, Evans blue (EB) extravasation, and tight junction protein expression were examined at 48 h after MCAO. We also investigated if ADT protected BBB integrity by suppressing post‐ischemic inflammation‐induced Matrix Metalloproteimase‐9 (MMP9) and Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). ADT increased blood H2S concentrations, decreased infarction, and improved neurological deficits. Particularly, ADT reduced EB extravasation, brain edema and preserved expression of tight junction proteins in the ischemic brain. NaHS also increased blood H2S levels and reduced EB extravasation following MCAO. Moreover, ADT inhibited expression of pro‐inflammatory markers induced Nitric Oxide Synthase (iNOS) and IL‐1β while enhanced expression of anti‐inflammatory markers arginase 1 and IL‐10 in the ischemic brain. Accordingly, ADT attenuated ischemia‐induced expression and activity of MMP9. Moreover, ADT reduced NOX‐4 mRNA expression, NOX activity, and inhibited nuclear translocation of Nuclear Factor Kappa‐B (NF‐κB) in the ischemic brain. In conclusion, H2S donors protected BBB integrity following experimental stroke possibly by acting through NF‐κB inhibition to suppress neuroinflammation induction of MMP9 and NOX4‐derived free radicals.

  相似文献   


9.
Increased mortality after stroke is associated with development of brain edema. The aim of the present study was to examine the contribution of endothelial myosin light chain (MLC) phosphorylation to hypoxia-induced blood-brain barrier (BBB) opening. Measurements of trans-endothelial electrical resistance (TEER) were performed to analyse BBB integrity in an in vitro co-culture model (bovine brain microvascular endothelial cells (BEC) and rat astrocytes). Brain fluid content was analysed in rats after stroke induction using a two-vein occlusion model. Dihydroethidium was used to monitor intracellular generation of reactive oxygen species (ROS) in BEC. MLC phosphorylation was detected using immunohistochemistry and immunoblot analysis. Hypoxia caused a decrease of TEER values by more than 40%, which was prevented by inhibition of the MLC-kinase (ML-7, 10 micromol/L). In addition, ML-7 significantly reduced the brain fluid content in vivo after stroke. The NAD(P)H-oxidase inhibitor apocynin (500 micromol/L) prevented the hypoxia-induced TEER decrease. Hypoxia-dependent ROS generation was completely abolished by apocynin. Furthermore, ML-7 and apocynin blocked hypoxia-dependent phosphorylation of MLC. Our data demonstrate that hypoxia causes a breakdown of the BBB in vitro and in vivo involving ROS and the contractile machinery.  相似文献   

10.
J. Neurochem. (2012) 122, 962-975. ABSTRACT: P-glycoprotein (ABCB1/MDR1, EC 3.6.3.44), the major efflux transporter at the blood-brain barrier (BBB), is a formidable obstacle to CNS pharmacotherapy. Understanding the mechanism(s) for increased P-glycoprotein activity at the BBB during peripheral inflammatory pain is critical in the development of novel strategies to overcome the significant decreases in CNS analgesic drug delivery. In this study, we employed the λ-carrageenan pain model (using female Sprague-Dawley rats), combined with confocal microscopy and subcellular fractionation of cerebral microvessels, to determine if increased P-glycoprotein function, following the onset of peripheral inflammatory pain, is associated with a change in P-glycoprotein trafficking which leads to pain-induced effects on analgesic drug delivery. Injection of λ-carrageenan into the rat hind paw induced a localized, inflammatory pain (hyperalgesia) and simultaneously, at the BBB, a rapid change in colocalization of P-glycoprotein with caveolin-1, a key scaffolding/trafficking protein. Subcellular fractionation of isolated cerebral microvessels revealed that the bulk of P-glycoprotein constitutively traffics to membrane domains containing high molecular weight, disulfide-bonded P-glycoprotein-containing structures that cofractionate with membrane domains enriched with monomeric and high molecular weight, disulfide-bonded, caveolin-1-containing structures. Peripheral inflammatory pain promoted a dynamic redistribution between membrane domains of P-glycoprotein and caveolin-1. Disassembly of high molecular weight P-glycoprotein-containing structures within microvascular endothelial luminal membrane domains was accompanied by an increase in ATPase activity, suggesting a potential for functionally active P-glycoprotein. These results are the first observation that peripheral inflammatory pain leads to specific structural changes in P-glycoprotein responsible for controlling analgesic drug delivery to the CNS.  相似文献   

11.
12.
The blood-brain barrier: connecting the gut and the brain   总被引:1,自引:0,他引:1  
Banks WA 《Regulatory peptides》2008,149(1-3):11-14
The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated by the ability of insulin to alter the BBB transport of amino acids and drugs, represents a second mechanism. A third mechanism is the ability of GI hormones to affect the secretion by the BBB of substances that themselves affect feeding and appetite, such as nitric oxide and cytokines. By these and other mechanisms, the BBB regulates communications between the CNS and GI tract.  相似文献   

13.
The mortality and morbidity associated with neonatal gram-negative meningitis have remained significant despite advances in antimicrobial chemotherapy. Escherichia coli K1 is the most common gram-negative organism causing neonatal meningitis. Our incomplete knowledge of the pathogenesis of this disease is one of the main reasons for this high mortality and morbidity. We have previously established both in vitro and in vivo models of the blood-brain barrier (BBB) using human brain microvascular endothelial cells (HBMEC) and hematogenous meningitis in neonatal rats, respectively. With these in vitro and in vivo models, we have shown that successful crossing of the BBB by circulating E. coli requires a high-degree of bacteremia, E. coli binding to and invasion of HBMEC, and E. coli traversal of the BBB as live bacteria. Our previous studies using TnphoA, signature-tagged mutagenesis and differential fluorescence induction identified several E. coli K1 determinants such as OmpA, Ibe proteins, AslA, TraJ and CNF1 contributing to invasion of HBMEC in vitro and traversal of the blood-brain barrier in vivo. We have shown that some of these determinants interact with specific receptors on HBMEC, suggesting E. coli translocation of the BBB is the result of specific pathogen-host cell interactions. Recent studies using functional genomics techniques have identified additional E. coli K1 factors that contribute to the high degree of bacteremia and HBMEC binding/invasion/transcytosis. In this review, we summarize the current knowledge on the mechanisms underlying the successful E. coli translocation of the BBB.  相似文献   

14.
The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1G93A becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1G85R. Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS.  相似文献   

15.
Alteration of blood-brain barrier function by methamphetamine and cocaine   总被引:1,自引:0,他引:1  
The integrity of the blood-brain barrier (BBB) plays an important role in maintaining a safe neural microenvironment in the brain. Loss of BBB integrity has been recognized as a major cause of profound brain alterations. Psychoactive drugs such as methamphetamine (METH) or cocaine are well-known drugs of abuse that can alter the permeability of the BBB via various mechanisms. In addition, the neurotoxicity of METH is well documented, and alterations in BBB function can contribute to this toxicity. A great deal of effort has been devoted to understanding the cellular and molecular mechanisms of the action of these drugs in the central nervous system. However, only a few investigations have focused on the effects of METH and cocaine on BBB function. The aim of this short review is to summarize our present knowledge of this subject.  相似文献   

16.
Amyotrophic lateral sclerosis is a neurodegenerative fatal disease. The only drug recognized to increase the survival time is riluzole(RLZ). In animal models, minocycline (MNC) delayed the onset of the disease and increased the survival time (in combination with RLZ). The objective of our work was to study the interactions between RLZ, MNC and the efflux pump p-glycoprotein (p-gp) at the blood–brain barrier. We investigated these two drugs as: (i) p-gp substrates by comparing their brain uptake in CF1 mdr1a (−/−) and mdr1a (+/+) mice, (ii) p-gp modulators by studying their effect on the cerebral uptake of digoxin. mdr1a (−/−) mice showed higher brain uptake of MNC and RLZ than mdr1a (+/+) (in a 1.6- and 1.4-fold, respectively); and in mdr1a (+/+) mice pre-treated with repeated doses of MNC, brain uptake of digoxin was increased. When both drugs were administrated to mdr1a (+/+) mice, MNC increased the brain uptake of RLZ in a 2.1-fold. In conclusion, MNC and RLZ are both p-gp substrates. MNC is also a p-gp inhibitor and increases the brain diffusion of RLZ. In vitro experiments with the GPNT cell line confirmed these results. These interactions should be taken into account in the design of future clinical trials.  相似文献   

17.
幽门螺杆菌(Helicobacter pylori,H.pylori)是一种选择性定植于胃上皮细胞的革兰氏阴性菌,是一种广泛传染的病原菌,也是诱导产生慢性胃炎的主要因素之一。近年来研究表明幽门螺杆菌感染诱导机体产生氧化应激反应,并通过各种逃逸机制避免被杀灭。幽门螺杆菌能不断刺激中性粒细胞和巨噬细胞表达活性氧和活性氮,导致体内活性氧和活性氮的过度积累,致使细胞的凋亡和胃粘膜损伤的加剧,这是导致胃炎发生及加重的重要因素。本文对幽门螺杆感染引起氧化应激反应的研究进展作简要综述。  相似文献   

18.
19.
Rat liver microsomal glutathione transferase 1 (MGST1) is a membrane-bound enzyme that displays both glutathione transferase and glutathione peroxidase activities. We hypothesized that physiologically relevant levels of MGST1 is able to protect cells from oxidative damage by lowering intracellular hydroperoxide levels. Such a role of MGST1 was studied in human MCF7 cell line transfected with rat liver mgst1 (sense cell) and with antisense mgst1 (antisense cell). Cytotoxicities of two hydroperoxides (cumene hydroperoxide (CuOOH) and hydrogen peroxide) were determined in both cell types using short-term and long-term cytotoxicity assays. MGST1 significantly protected against CuOOH and against hydrogen peroxide (although less pronounced and only in short-term tests). These results demonstrate that MGST1 can protect cells from both lipophilic and hydrophilic hydroperoxides, of which only the former is a substrate. After CuOOH exposure MGST1 significantly lowered intracellular ROS as determined by FACS analysis.  相似文献   

20.
Leptin is produced in adipose tissue in the periphery, but its satiety effect is exerted in the CNS that it reaches by a saturable transport system across the blood–brain barrier (BBB). The short form of the leptin receptor has been hypothesized to be the transporter, with impaired transport of leptin being implicated in obesity. In Koletsky rats, the splice variant that gives rise to the short form of the leptin receptor contains a point mutation that results in marked obesity. We studied the transport of leptin across the BBB in Koletsky rats and found it to be significantly less than in their lean littermates. By contrast, Sprague–Dawley rats matched in weight to each of these two groups showed no difference in the blood–to–brain influx of leptin. HPLC showed that most of the leptin crossing the BBB in rats remained intact and capillary depletion showed that most of the leptin reached the parenchyma of the brain. The results indicate that the short form of the leptin receptor is involved in the transport of leptin across the BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号