首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The wide range of functions attributed to GTP-binding regulatory proteins (G proteins) is reflected in the structural diversity which exists among the alpha, beta, and gamma subunits of G proteins. Recently two cDNA clones encoding beta subunits, beta 1 and beta 2, were isolated from bovine and human cDNA libraries. We report here that the beta 2 gene encodes the 35-kilodalton (kDa) component of the beta 35/beta 36 subunit of G proteins and that the beta 1 gene encodes the 36-kilodalton component. The in vitro translation product of the beta 2 cDNA co-migrates with the 35-kDa beta subunit (beta 35), while the in vitro product of the beta 1 cDNA co-migrates with the 36-kDa beta subunit (beta 36) on denaturing polyacrylamide gels. In addition, antisera generated against synthetic beta 2 peptides bind specifically to the beta 35 component of isolated G proteins and to a 35-kDa protein in myeloid cell membranes. Our results suggest that the two beta subunits could serve distinct functions, as they are derived from separate genes which have been highly conserved in evolution.  相似文献   

4.
Oguchi S  Sassa H  Hirano H 《Gene》2001,272(1-2):19-23
The 20S proteasome is the proteolytic complex that is involved in removing abnormal proteins and other diverse biological functions. The 20S proteasome is constituted of 28 subunits arranged in four rings of seven subunits, and exists as a hollow cylinder. The two outer rings and the two inner rings are composed of seven different alpha and beta type subunits, respectively, giving an alpha 7 beta 7 beta 7 alpha 7 structure. We previously reported the primary structures of the 14 proteasomal subunit subfamilies in rice (Oryza sativa), representing the first set for all the subfamilies from monocot. In this study, a distinct cDNA sequence encoding the alpha1 subunit, OsPAA2, was identified. The amino acid sequence similarity between the two rice alpha1 subunits was as low as 59.6%, contrasting with those between paralogs of Arabidopsis proteasome subunit genes. The expression pattern of the OsPAA2 gene was different from that of another alpha1 gene, OsPAA1. These data suggest that OsPAA2 might play a distinct role from that of OsPAA1 in the 20S proteasome complex.  相似文献   

5.
Cell adhesion to extracellular matrices is mediated by a set of heterodimeric cell surface receptors called integrins that might be the subject of regulation by growth and differentiation factors. We have examined the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of the very late antigens or alpha beta 1 group of integrins in human cell lines. The six known members of this family share a common beta 1 subunit but have distinct alpha subunits that confer selective affinity toward type I collagen, fibronectin, laminin, and other as yet unknown cell adhesion proteins. Using a panel of specific antibodies and cDNA probes, we show that in WI-38 lung fibroblasts TGF-beta 1 elevates concomitantly the expression of alpha 1, alpha 2, alpha 3, alpha 5, and beta 1 integrin subunits at the protein and/or mRNA level, their assembly into the corresponding alpha beta 1 complexes, and their exposure on the cell surface. The rate of synthesis of total alpha subunits relative to beta 1 subunit is higher in TGF-beta 1-treated cells than in control cells. The characteristically slow (t1/2 approximately 10 h) rate of beta 1 conversion from precursor form to mature glycoprotein in untreated cells increases markedly (to t1/2 approximately 3 h) in response to TGF-beta 1. The results suggest that in WI-38 fibroblasts the beta 1 subunit is synthesized in excess over alpha subunits, and assembly of beta 1 subunits with rate-limiting alpha subunits is required for transit through the Golgi and exposure of alpha beta 1 complex on the cell surface. TGF-beta 1 does not induce the synthesis of integrin subunits that are not expressed in unstimulated cells, such as alpha 4 and alpha 6 subunits in WI-38 fibroblasts. However, alpha 4 and alpha 6 subunits can be regulated by TGF-beta in those cells that express them. The results suggest that TGF-beta regulates the expression of individual integrin subunits by parallel but independent mechanisms. By modifying the balance of individual alpha beta 1 integrins, TGF-beta 1 might modulate those aspects of cell migration, positioning, and development that are guided by adhesion to extracellular matrices.  相似文献   

6.
7.
Structure and function of heterotrimeric G proteins in plants   总被引:12,自引:0,他引:12  
Heterotrimeric G proteins are mediators that transmit the external signals via receptor molecules to effector molecules. The G proteins consist of three different subunits: alpha, beta, and gamma subunits. The cDNAs or genes for all the alpha, beta, and gamma subunits have been isolated from many plant species, which has contributed to great progress in the study of the structure and function of the G proteins in plants. In addition, rice plants lacking the alpha subunit were generated by the antisense method and a rice mutant, Daikoku d1, was found to have mutation in the alpha-subunit gene. Both plants show abnormal morphology such as dwarfism, dark green leaf, and small round seed. The findings revealed that the G proteins are functional molecules regulating some body plans in plants. There is evidence that the plant G proteins participate at least in signaling of gibberellin at low concentrations. In this review, we summarize the currently known information on the structure of plant heterotrimeric G proteins and discuss the possible functions of the G proteins in plants.  相似文献   

8.
The sequences of two Drosophila and one rabbit protein phosphatase (PP) 1 catalytic subunits were determined from their cDNA. The sequence of Drosophila PP1 alpha 1 was deduced from a 2.2-kb cDNA purified from an embryonic cDNA library, while that for Drosophila PP1 beta was obtained from overlapping clones isolated from both a head cDNA library and an eye imaginal disc cDNA library. The gene for Drosophila PP1 alpha 1 is at 96A2-5 on chromosome 3 and encodes a protein of 327 amino acids with a calculated molecular mass of 37.3 kDa. The gene for Drosophila PP1 beta is localized at 9C1-2 on the X chromosome and encodes a protein of 330 amino acids with a predicted molecular mass of 37.8 kDa. PP1 alpha 1 shows 96% amino acid sequence identity to PP1 alpha 2 (302 amino acids), an isoform whose gene is located in the 87B6-12 region of chromosome 3 [Dombrádi, V., Axton, J. M., Glover, D.M. Cohen, P.T.W. (1989) Eur. J. Biochem. 183, 603-610]. PP1 beta shows 85% identity to PP1 alpha 1 and PP1 alpha 2 over the 302 homologous amino acids. These results demonstrate that at least three genes are present in Drosophila that encode different isoforms of PP1. Drosophila PP1 alpha 1 and PP1 beta show 89% amino acid sequence identity to rabbit PP1 alpha (330 amino acids) [Cohen, P.T.W. (1988) FEBS Lett. 232, 17-23] and PP1 beta (327 amino acids), respectively, demonstrating that the structures of both isoforms are among the most conserved proteins known throughout the evolution of the animal kingdom. The presence of characteristic structural differences between PP1 alpha and PP1 beta, which have been preserved from insects to mammals, implies that the alpha and beta isoforms may have distinct biological functions.  相似文献   

9.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

10.
Until the onset of anaphase, sister chromatids are bound to each other by a multi-subunit protein complex called cohesin. Since chromosomes in meiosis behave differently from those in mitosis, the cohesion and separation of homologous chromosomes and sister chromatids in meiosis are thought to be regulated by meiosis-specific cohesin subunits. Actually, several meiosis-specific cohesin subunits, including Rec8, STAG3 and SMC1beta, are known to exist in mammals; however, there are no reports of meiosis-specific cohesin subunits in other vertebrates. To investigate the protein expression and localization of cohesin subunits during meiosis in non-mammalian species, we isolated cDNA clones encoding SMC1alpha, SMC1beta, SMC3 and Rad21 in the medaka and produced antibodies against recombinant proteins. Medaka SMC1beta was expressed solely in gonads, while SMC1alpha, SMC3 and Rad21 were also expressed in other organs and in cultured cells. SMC1beta forms a complex with SMC3 but not with Rad21, in contrast to SMC1alpha, which forms complexes with both SMC3 and Rad21. SMC1alpha and Rad21 were mainly expressed in mitotically dividing cells in the testis (somatic cells and spermatogonia), although their weak expression was detected in pre-leptotene spermatocytes. SMC1beta was expressed in spermatogonia and spermatocytes. SMC1beta was localized along the chromosomal arms as well as on the centromeres in meiotic prophase I, and its existence on the chromosomes persisted up to metaphase II, a situation different from that reported in the mouse, in which SMC1beta is lost from the chromosome arms in late pachytene despite its universal presence in vertebrates.  相似文献   

11.
12.
Two distinct types of cDNA clones encoding for the pyruvate dehydrogenase (PDH) E1 beta subunit were isolated from a human liver lambda gt11 cDNA library and characterized. These cDNA clones have identical nucleotide sequences for PDH E1 beta protein coding region but differ in their lengths and in the sequences of their 3'-untranslated regions. The smaller cDNA had an unusual polyadenylation signal within its protein coding region. The cDNA-deduced protein of PDH E1 beta subunit revealed a precursor protein of 359 amino acid residues (Mr 39,223) and a mature protein of 329 residues (Mr 35,894), respectively. Both cDNAs shared high amino acid sequence similarity with that isolated from human foreskin (Koike, K.K., Ohta, S., Urata, Y., Kagawa, Y., and Koike, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 41-45) except for three regions of frameshift mutation. These changes led to dramatic alterations in the local net charges and predicted protein conformation. One of the different sequences in the protein coding region of liver cDNA (nucleotide position 452-752) reported here was confirmed by sequencing the region after amplification of cDNA prepared from human skin fibroblasts by the polymerase chain reaction. Southern blot analysis verified simple patterns of hybridization with E1 beta cDNA, indicating that the PDH E1 beta subunit gene is not a member of a multigene family. The mechanisms of differential expression of the PDH E1 alpha and E1 beta subunits were also studied in established fibroblast cell lines obtained from patients with Leigh's syndrome and other forms of congenital lactic acidosis. In Northern blot analyses for PDH E1 alpha and E1 beta subunits, no apparent differences were observed between two Leigh's syndrome and the control fibroblasts studied: one species of PDH E1 alpha mRNA and three species of E1 beta mRNA were observed in all the cell lines examined. However, in one tricarboxylic acid cycle deficient fibroblast cell line, which has one-tenth of the normal enzyme activity, the levels of immunoreactive PDH E1 alpha and E1 beta subunits were markedly decreased as assessed by immunoblot analyses. These data indicated a regulatory mutation caused by either inefficient translation of E1 alpha and E1 beta mRNAs into protein or rapid degradation of both subunits upon translation. In contrast, the PDH E1 alpha and E1 beta subunits in two fibroblast cell lines from Leigh's syndrome patients appeared to be normal as judged by 1) enzyme activity, 2) mRNA Northern blot, 3) genomic DNA Southern blot, and 4) immunoblot analyses indicating that the lactic acidosis seen in these patients did not result from a single defect in either of these E1 alpha and E1 beta subunits of the PDH complex.  相似文献   

13.
14.
cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most of the expressed proteins were produced in an insoluble form. The recombinant CKII alpha subunit was purified by DEAE-cellulose chromatography, followed by phosphocellulose and heparin-agarose chromatography. The recombinant CKII beta subunit was extracted from the insoluble pellet and purified in a single step on phosphocellulose. From 10 g bacterial cells, the yield of soluble protein was 12 mg alpha subunit and 5 mg beta subunit. SDS/PAGE analysis of the purified recombinant proteins indicated molecular masses of 42 kDa and 26 kDa for the alpha and beta subunits, respectively, in agreement with the molecular masses determined for the subunits of the native enzyme. The recombinant alpha subunit exhibited protein kinase activity which was greatest in the absence of monovalent ions. With increasing amounts of salt, alpha subunit kinase activity declined rapidly. Addition of the beta subunit led to maximum stimulation at a 1:1 ratio of both subunits. Using a synthetic peptide (RRRDDDSDDD) as a substrate, the maximum protein kinase stimulation observed was fourfold under the conditions used. The Km of the reconstituted enzyme for the synthetic peptide (80 microM) was comparable to the mammalian enzyme (40-60 microM), whereas the alpha subunit alone had a Km of 240 microM. After sucrose density gradient analysis, the reconstituted holoenzyme sedimented at the same position as the mammalian CKII holoenzyme.  相似文献   

15.
Receptor-effector coupling by G proteins   总被引:56,自引:0,他引:56  
The primary structure of G proteins as deduced from purified proteins and cloned subunits is presented. When known, their functions are discussed, as are recent data on direct regulation of ionic channels by G proteins. Experiments on expression of alpha subunits, either in bacteria or by in vitro translation of mRNA synthesized from cDNA are presented as tools for definitive assignment of function to a given G protein. The dynamics of G protein-mediated signal transduction are discussed. Key points include the existence of two superimposed regulatory cycles in which upon activation by GTP, G proteins dissociate into alpha and beta gamma and their dissociated alpha subunits hydrolyze GTP. The action of receptors to catalyze rather than regulate by allostery the activation of G proteins by GTP is emphasized, as is the role of subunit dissociation, without which receptors could not act as catalysts. To facilitate the reading of this review, we have presented the various subtopics of this rapidly expanding field in sections 1-1X, each of which is organized as a self-contained sub-chapter that can be read independently of the others.  相似文献   

16.
17.
Biochemical and crystallographic data suggest that, in contrast with other organisms, the active maize protein kinase CK2 might be composed simply of a catalytic polypeptide (CK2alpha), thus lacking CK2beta regulatory subunits. To investigate the existence and functionality of CK2beta regulatory subunits in Zea mays, we have screened a maize cDNA library using different approaches and have isolated three full-length cDNAs encoding CK2beta regulatory subunits (CK2beta-1, CK2beta-2 and CK2beta-3) and a cDNA coding for a novel CK2alpha catalytic subunit, CK2alpha-3. The pattern of expression of all these alpha/beta subunits has been studied in different organs and developmental stages using specific probes for each isoform, and indicates that while CK2alpha subunits are constitutive, CK2beta subunits are expressed differentially during embryo development. The yeast two-hybrid system and pull-down assays have been used to study specific interactions between the different subunits. While CK2alpha subunits are unable to self-associate, preferential interactions between alpha/beta isoforms and beta/beta isoforms can be predicted. Furthermore, we show that maize CK2alpha/beta subunits assemble into a structural tetrameric complex which has very similar properties to those described in other organisms, and that expression of maize CK2beta subunits in yeast allows the rescue of the phenotypic defects associated to the lack of CK2 function, thus demonstrating the functionality of maize CK2beta regulatory subunits.  相似文献   

18.
The 60S ribosomal subunits from Saccharomyces cerevisiae contain a set of four acidic proteins named YP1alpha, YP1beta, YP2alpha, and YP2beta. The genes for each were PCR amplified from a yeast cDNA library, sequenced, and expressed in Escherichia coli cells using two expression systems. The first system, pLM1, was used for YP1beta, YP2alpha, and YP2beta. The second one, pT7-7, was used for YP1alpha. Expression in both cases was under the control of a strong inducible T7 promoter. The amount of induced recombinant proteins in the host cells was around 10 to 20% of the total soluble bacterial proteins. A new protocol for purification of all four recombinant proteins was established. The preliminary steps of purification were done by ammonium sulfate precipitation (YP1alpha, YP1beta) or NH4Cl/ethanol extraction (YP2alpha, YP2beta). The recombinant proteins were then purified to apparent homogeneity by only two steps of classical chromatographies, ion exchange (DEAE-cellulose) and gel filtration (Sephacryl S-200). Isoelectrofocusing analysis of YP2alpha and YP2beta showed the pIs of the recombinant proteins are the same as that of the native yeast ribosomal P2 proteins. The pI of YP1alpha is changed due to the addition of five amino acids attached to the N-terminus of recombinant polypeptide from the expression vector. YP1beta was obtained as a truncated form of polypeptide, similar to its ribosomal counterpart, YP1beta'. This was proved by isoelectrofocusing gel analysis.  相似文献   

19.
The GTP-binding regulatory proteins (G proteins) that transduce signals from receptors to effectors are composed of alpha, beta, and gamma subunits. Whereas the role of alpha subunits in directly regulating effector activity is widely accepted, it has recently been demonstrated that beta gamma subunits may also directly regulate effector activity. This has made clear the importance of identifying and characterizing beta and gamma subunits. We have isolated a cDNA clone encoding a new gamma subunit, referred to here as the gamma 7 subunit, using probes based on peptide sequences of a gamma subunit previously purified from bovine brain. The clone contains a 1.47-kilobase cDNA insert, which includes an open reading frame of 204 base pairs that predicts a 68-amino acid polypeptide with a calculated M(r) of 7553. The predicted protein shares amino acid identities with the other known gamma subunits, ranging from 38 to 68%. Also characteristic of gamma subunits is a carboxyl-terminal CAAX motif. The expression of the gamma 7 subunit as well as the gamma 2, gamma 3, and gamma 5 subunits was examined in several bovine tissues at both the mRNA and protein levels. Whereas the gamma 2 and gamma 3 subunits were selectively expressed in brain, the gamma 5 and gamma 7 subunits were expressed in a variety of tissues. Thus, the gamma 5 and gamma 7 subunits are the first G protein gamma subunits known that could participate in the regulation of widely distributed signal transduction pathways.  相似文献   

20.
A G protein alpha subunit gene (pigpa1) and a G protein beta subunit gene (pigpb1) were isolated from the oomycete Phytophthora infestans, the causal agent of potato late blight. Heterotrimeric G proteins are evolutionary conserved GTP-binding proteins that are composed of alpha,beta, and gamma subunits and participate in diverse signal transduction pathways. The deduced amino acid sequence of both pigpa1 and pigpb1, showed the typical conserved motifs present in Galpha or Gbeta proteins from other eukaryotes. Southern blot analysis revealed no additional copies of Galpha or Gbeta subunit genes in P. infestans, suggesting that pigpa1 and pigpb1 are single copy genes. By cross-hybridization homologues of gpa1 and gpb1 were detected in other Phythophthora species. Expression analyses revealed that both genes are differentially expressed during asexual development, with the highest mRNA levels in sporangia. In mycelium, no pigpa1 mRNA was detected. Western blot analysis using a polyclonal GPA1 antibody confirmed the differential expression of pigpa1. These expression patterns suggest a role for G-protein-mediated signaling during formation and germination of asexual spores of P. infestans, developmental stages representing the initial steps of the infection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号