首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The proliferating cell nuclear antigen gene was cloned from Fenneropenaeus chinensis (FcPCNA). The full-length cDNA sequence of FcPCNA encodes 260 amino acids showing high identity with PCNAs reported in other species. FcPCNA expressed especially high in proliferating tissues of shrimp such as haematopoietic tissue (HPT) and ovary. In order to understand the response of HPT to bacteria and virus challenge, mRNA level of FcPCNA in HPT was analyzed after shrimp were challenged by Vibrio anguillarum and white spot syndrome virus (WSSV). FcPCNA expression in HPT of shrimp was responsive to WSSV and Vibrio challenge, but different expression profiles were obtained after challenge by these two pathogens. The data provide additional information to understand the defense mechanisms of shrimp against virus and bacteria.  相似文献   

3.
4.
An in vivo expression system to produce large amounts of virus-derived dsRNAs in bacteria to provide a practical control of white spot syndrome virus (WSSV) in shrimp was developed. The bacterially synthesized dsRNA specific to VP28 gene of WSSV promoted gene-specific interference with the WSSV infection in shrimp. Virus infectivity was significantly reduced in WSSV-challenged shrimp injected with VP28-dsRNA and 100% survival was recorded. The inhibition of the expression of WSSV VP28 gene in experimentally challenged animals by VP28-dsRNA was confirmed by RT-PCR and Western blot analyses. Furthermore, we have demonstrated the efficacy of bacterially expressed VP28-dsRNA to silence VP28 gene expression in SISK cell line transfected with eukaryotic expression vector (pcDNA3.1) inserted with VP28 gene of WSSV. The expression level of VP28 gene in SISK cells was determined by fluorescent microscopy and ELISA. The results showed that the expression was significantly reduced in cells transfected with VP28dsRNA, whereas the cells transected with pcDNA-VP28 alone showed higher expression. The in vivo production of dsRNA using prokaryotic expression system could be an alternative to in vitro method for large-scale production of dsRNA corresponding to VP28 gene of WSSV for practical application to control the WSSV in shrimp farming.  相似文献   

5.
High mortality in the shrimp farming industry is caused by several pathogens such as white spot syndrome virus (WSSV), yellow head virus (YHV) and Vibrio harveyi (V. harveyi). A PAP (Phagocytosis activating protein) gene able to activate phagocytosis of shrimp hemocytes was cloned into the eukaryotic expression vector phMGFP. In vitro expression was confirmed by transfection of PAP-phMGFP into CHO (Chinese Hamster Ovary) cells and the expression of the Green Fluorescent Protein (GFP) was observed. In order to activate the phagocytic activity of shrimp, 20, 40 and 80 μg/shrimp of this PAP-phMGFP vector were injected into Litopenaeus vannamei muscle. After challenged with WSSV, 40 μg/shrimp produced the highest relative percent survival (77.78 RPS). Analysis for the expression of the GFP gene in various tissues showed the expression mostly in the hemolymph of the immunized shrimp. The expression level of PAP and proPO (Prophenoloxidase) gene were highest at 7 days after immunization. This agreed with the efficiency of protection against WSSV that also occurred 7 days after immunization with the highest RPS of 86.61%. However there was no protection 30 days after immunization. Hemocytes of shrimp injected with PAP-phMGFP had 1.9 folds and 3 folds higher percentage phagocytosis and phagocytic index than the shrimp injected with PBS. Accordingly, copies of WSSV reduced in the PAP-phMGFP injected shrimp. In addition, PAP-phMGFP also protected shrimp against several pathogens: WSSV, YHV and V. harveyi, with RPS values of 86.61%, 63.34% and 50% respectively. This finding shows that the immune cellular defense mechanisms in shrimp against pathogens can be activated by injection of PAP-phMGFP and could indicate possible useful ways to begin to control this process.  相似文献   

6.
7.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

8.
9.
杜尚广  余波 《生物工程学报》2020,36(7):1422-1430
HSP21是植物响应高温胁迫的关键基因,在防止蛋白变性、保护细胞结构和维持植物正常生长发育等方面发挥重要作用,克隆HSP21基因是揭示木薯抵抗高温胁迫分子机制的基础。为得到木薯HSP21同源基因及分析其表达蛋白的性质,文中采用电子克隆技术对新基因进行组装和衍生,并使用生物信息学分析方法,对预测蛋白的一级至高级结构、亲水性/疏水性、信号肽、蛋白同源性和系统进化等进行全面解析。结果表明,HSP21基因含有969个碱基对,其开放阅读框有705个碱基,预测蛋白含234个氨基酸。预测蛋白是非跨膜蛋白,具有碱性和亲水性,主要定位于叶绿体内。通过多重序列比对和系统进化分析发现,木薯与巴西橡胶树、蓖麻和麻疯树等植物的HSP21蛋白同源性较高。结果可为该基因的克隆和转化提供参考依据。  相似文献   

10.
Tetraspanins belong to the transmembrane 4 superfamily (TM(4)SF), which span the cell membrane 4 times and act as bridges or connectors. Increasing evidences have shown that tetraspanins play important role in virus infection. The large extracellular loop (LEL) of a tetraspanin is considered as a possible target of some virus. Tetraspanins are widely found in invertebrates, but the functional roles of most invertebrate tetraspanins have remained unknown. Recently, a tetraspanin, called FcTetraspanin-3, was cloned from the cDNA library of Chinese shrimp, Fenneropenaeus chinensis. The FcTetraspanin-3 constitutive expression in all examined tissues and the expression of the gene were highly induced in hepatopancreas, lymphoid organ and intestine by white spot syndrome virus (WSSV) challenge. In this study, we expressed and purified the recombinant peptide containing the LEL domain of FcTetraspanin-3, and produced the anti-LEL polyclone antibody. The expression of FcTetraspanin-3 was observed by real-time PCR and Western blot. Also, the localization of FcTetraspanin-3-positive cells in intestine and hepatopancreas were revealed by immunofluorescence. The results of anti-LEL antibody blocking experiments shown that the antibody can significantly reduce the mortality of shrimp challenged by WSSV. Additionally, dsRNA interference was utilized to examine the functional role of FcTetraspanin-3 in response to WSSV infection, and a sensible decrease of the viral copy number in the tetraspanin knockdown shrimp. These results suggested the blocking of LEL domain of FcTetraspanin-3 could inhibit the infection of WSSV. FcTetraspanin-3 might play an important role in response to WSSV infection, and the LEL domain of FcTetraspanin-3 might mediate the entry of WSSV.  相似文献   

11.
White spot syndrome virus (WSSV) disease is a major threat to shrimp culture worldwide. Here, we assessed the efficacy of the oral administration of purified recombinant VP28, an envelope protein of WSSV, expressed in a Gram-positive bacterium, Brevibacillus brevis, in providing protection in shrimp, Penaeus japonicus, upon challenge with WSSV. Juvenile shrimp (2-3g in body weight) fed with pellets containing purified recombinant VP28 (50mug/shrimp) for 2weeks showed significantly higher survival rates than control groups when challenged with the virus at 3days after the last day of feeding. However, when shrimp were challenged 2weeks after the last day of feeding, survival rates decreased (33.4% and 24.93%, respectively). Survival rate was dose-dependent, increasing from 60.7 to 80.3% as the dose increased from 1 to 50mug/shrimp. At a dose of 50mug/shrimp, the recombinant protein provided protection as soon as 1day after feeding (72.5% survival). Similar results were obtained with larger-sized shrimp. These results show that recombinant VP28 expressed in a Gram-positive bacterium is a potential oral vaccine against WSSV.  相似文献   

12.
In the present study, a DNA sequence encoding a small heat shock protein gene (FcHsp21) in the Chinese shrimp, Fenneropenaeus chinensis, was cloned, and its expression was analyzed after white spot syndrome virus (WSSV) infection. The FcHsp21 gene contained an open reading frame (ORF) of 555 bp in length, encoding a 184 amino acid protein with a theoretical size of about 21 kDa and a predicted isoelectric point of 5.38. The mRNA of the Hsp21 had a long Poly(A) tail (748 bp) with six polyadenylation signals (AATAA) downstream from the terminator. In addition, the gene contained a relatively long intron (507 bp), which has not been described in shrimps. The intron contained a long compound type microsatellite repeat sequence. The analysis of the phylogenetics revealed that the Hsp21 was highly conserved among the genomes of animals. Our results show that the expression modes of FcHsp21 can be changed by different WSSV infection methods. The expression of FcHsp21 was inhibited by muscle-injecting WSSV, but induced by feeding WSSV.  相似文献   

13.
14.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

15.
16.
Monoclonal antibodies (MAbs) were produced against white spot syndrome virus (WSSV) of penaeid shrimp. The virus isolate used for immunization was obtained from China in 1994 and was passaged in Penaeus vannamei. The 4 hybridomas selected for characterization all produced MAbs that reacted with the 28 kD structural protein by Western blot analysis. The MAbs tested in dot-immunoblot assays were capable of detecting the virus in hemolymph samples collected from moribund shrimp during an experimentally induced WSSV infection. Two of the MAbs were chosen for development of serological detection methods for WSSV. The 2 MAbs detected WSSV infections in fresh tissue impression smears using a fluorescent antibody for final detection. A rapid immunohistochemical method using the MAbs on Davidson's fixed tissue sections identified WSSV-infected cells and tissues in a pattern similar to that seen with digoxigenin-labeled WSSV-specific gene probes. A whole mount assay of pieces of fixed tissue without paraffin embedding and sectioning was also successfully used for detecting the virus. None of the MAbs reacted with hemolymph from specific pathogen-free shrimp or from shrimp infected with infectious hypodermal and hematopoietic necrosis virus, yellow head virus or Taura syndrome virus. In Western blot analysis, the 2 MAbs did not detect any serological differences among WSSV isolates from China, Thailand, India, Texas, South Carolina or Panama. Additionally, the MAbs did not detect a serological difference between WSSV isolated from penaeid shrimp and WSSV isolated from freshwater crayfish.  相似文献   

17.
White spot syndrome virus (WSSV) occurs worldwide and causes high mortality and considerable economic damage to the shrimp farming industry. No adequate treatments against this virus are available. It is generally accepted that invertebrates such as shrimp do not have an adaptive immune response system such as that present in vertebrates. As it has been demonstrated that shrimp surviving a WSSV infection have higher survival rates upon subsequent rechallenge, we investigated the potential of oral vaccination of shrimp with subunit vaccines consisting of WSSV virion envelope proteins. Penaeus monodon shrimp were fed food pellets coated with inactivated bacteria overexpressing two WSSV envelope proteins, VP19 and VP28. Vaccination with VP28 showed a significant lower cumulative mortality compared to vaccination with bacteria expressing the empty vectors after challenge via immersion (relative survival, 61%), while vaccination with VP19 provided no protection. To determine the onset and duration of protection, challenges were subsequently performed 3, 7, and 21 days after vaccination. A significantly higher survival was observed both 3 and 7 days postvaccination (relative survival, 64% and 77%, respectively), but the protection was reduced 21 days after the vaccination (relative survival, 29%). This suggests that contrary to current assumptions that invertebrates do not have a true adaptive immune system, a specific immune response and protection can be induced in P. monodon. These experiments open up new ways to benefit the WSSV-hampered shrimp farming industry.  相似文献   

18.
19.
The innate immunity and resistance against white spot syndrome virus (WSSV) in white shrimp Litopenaeus vannamei which received the Gracilaria tenuistipitata extract were examined. Shrimp immersed in seawater containing the extract at 0 (control), 400 and 600 mg L(-1) for 3 h were challenged with WSSV at 2 × 10(4) copies shrimp(-1). Shrimp not exposed to the extract and not received WSSV challenge served as unchallenged control. The survival rate of shrimp immersed in 400 mg L(-1) or 600 mg L(-1) extract was significantly higher than that of challenged control shrimp over 24-120 h. The haemocyte count, phenoloxidase activity, respiratory burst, superoxide dismutase activity, and lysozyme activity of shrimp immersed in 600 mg L(-1) extract were significantly higher than those of unchallenged control shrimp at 6, 6, 6, 6, and 6-24 h post-challenge. In another experiment, shrimp which had received 3 h immersion of 0, 400, 600 mg L(-1) extract were challenged with WSSV. The shrimp were then received a booster (3 h immersion in the same dose of the extract), and the immune parameters were examined at 12-120 h post-challenge. The immune parameters of shrimp immersed in 600 mg L(-1) extract, and then received a booster at 9, 21, and 45 h were significantly higher than those of unchallenged control shrimp at 12-48 h post-challenge. In conclusion, shrimp which had received the extract exhibited protection against WSSV as evidenced by the higher survival rate and higher values of immune parameters. Shrimp which had received the extract and infected by WSSV showed improved immunity when they received a booster at 9, 21, and 45 h post-WSSV challenge. The extract treatment caused less decrease in PO activity, and showed better performance of lysozyme activity and antioxidant response in WSSV-infected shrimp.  相似文献   

20.
WSSV和IHHNV二重实时荧光PCR检测方法的建立   总被引:6,自引:2,他引:4  
根据基因库中对虾白斑综合征病毒WSSV(AF369029)和传染性皮下及造血器官坏死病毒IHHNV(AF218226)基因序列,设计了WSSV和IHHNV的两对特异性引物和两条用不同荧光基团标记的TaqMan探针。对反应条件和试剂浓度进行优化,建立了能够同时检测WSSV和IHHNV的二重实时荧光PCR方法。该方法特异性好,对WSSV和IHHNV的检测敏感性分别达到2和20个模板拷贝数;此外抗干扰能力强,对WSSV和IHHNV不同模板浓度进行组合,仍可有效地同时检测这二个病毒。对保存的30份经常规PCR检测仅为WSSV或IHHNV阳性的样品进行二重实时荧光PCR检测,结果都为阳性,其中1份为WSSV和IHHNV混合感染。本研究建立的二重实时荧光PCR方法用于WSSV和IHHNV的检测具有特异、敏感、快速、定量等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号