共查询到20条相似文献,搜索用时 8 毫秒
1.
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior. 相似文献
2.
In neuronal cells the neurotransmitter acetylcholine is transferred from the cytoplasm into synaptic vesicles by the vesicular acetylcholine transporter (VAChT). The cytoplasmic tail of VAChT has been shown to contain signals that direct its sorting and trafficking. The role of clathrin-associated protein complexes in VAChT sorting to synaptic vesicles has been examined. A fusion protein between the VAChT cytoplasmic tail and glutathione S-transferase was used to identify VAChT-clathrin-associated protein adaptor protein 1, adaptor protein 2 and adaptor protein 180 complexes from a rat brain extract. In vivo coimmunoprecipitation confirmed adaptin alpha and adaptin gamma complexes, but adaptor protein 180 complexes were not detected by this technique. Deletion and site directed mutagenesis show that the VAChT cytoplasmic tail contains multiple trafficking signals. These include a non-classical tyrosine motif that serves as the signal for adaptin alpha and a dileucine motif that serves as the signal for adaptin gamma. A classical tyrosine motif is also involved in VAChT trafficking, but does not interact with any known adaptor proteins. There appear to be two endocytosis motifs, one involving the adaptor protein 1 binding site and the other involving the adaptor protein 2 binding site. These results suggest a complex trafficking pathway for VAChT. 相似文献
3.
Santos MS Barbosa J Veloso GS Ribeiro F Kushmerick C Gomez MV Ferguson SS Prado VF Prado MA 《Journal of neurochemistry》2001,78(5):1104-1113
Synaptic vesicle proteins are suggested to travel from the trans-Golgi network to active zones via tubulovesicular organelles, but the participation of different populations of endosomes in trafficking remains a matter of debate. Therefore, we generated a green fluorescent protein (GFP)-tagged version of the vesicular acetylcholine transporter (VAChT) and studied the localization of VAChT in organelles in the cell body and varicosities of living cholinergic cells. GFP-VAChT is distributed to both early and recycling endosomes in the cell body and is also observed to accumulate in endocytic organelles within varicosities of SN56 cells. GFP-VAChT positive organelles in varicosities are localized close to plasma membrane and are labeled with FM4-64 and GFP-Rab5, markers of endocytic vesicles and early endosomes, respectively. A GFP-VAChT mutant lacking a dileucine endocytosis motif (leucine residues 485 and 486 changed to alanine residues) accumulated at the plasma membrane in SN56 cells. This endocytosis-defective GFP-VAChT mutant is localized primarily at the somal plasma membrane and exhibits reduced neuritic targeting. Furthermore, the VAChT mutant did not accumulate in varicosities, as did VAChT. Our data suggest that clathrin-mediated internalization of VAChT to endosomes at the cell body might be involved in proper sorting and trafficking of VAChT to varicosities. We conclude that genesis of competent cholinergic secretory vesicles depends on multiple interactions of VAChT with endocytic proteins. 相似文献
4.
5.
de Castro BM Pereira GS Magalhães V Rossato JI De Jaeger X Martins-Silva C Leles B Lima P Gomez MV Gainetdinov RR Caron MG Izquierdo I Cammarota M Prado VF Prado MA 《Genes, Brain & Behavior》2009,8(1):23-35
Storage of acetylcholine in synaptic vesicles plays a key role in maintaining cholinergic function. Here we used mice with a targeted mutation in the vesicular acetylcholine transporter (VAChT) gene that reduces transporter expression by 40% to investigate cognitive processing under conditions of VAChT deficiency. Motor skill learning in the rotarod revealed that VAChT mutant mice were slower to learn this task, but once they reached maximum performance they were indistinguishable from wild-type mice. Interestingly, motor skill performance maintenance after 10 days was unaffected in these mutant mice. We also tested whether reduced VAChT levels affected learning in an object recognition memory task. We found that VAChT mutant mice presented a deficit in memory encoding necessary for the temporal order version of the object recognition memory, but showed no alteration in spatial working memory, or spatial memory in general when tested in the Morris water maze test. The memory deficit in object recognition memory observed in VAChT mutant mice could be reversed by cholinesterase inhibitors, suggesting that learning deficits caused by reduced VAChT expression can be ameliorated by restoring ACh levels in the synapse. These data indicate an important role for cholinergic tone in motor learning and object recognition memory. 相似文献
6.
Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain and stimulates clathrin assembly and clathrin‐mediated endocytosis. A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP‐1, AP‐2, and AP‐3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (μ) subunits interact with a YXXØ‐type tyrosine motif located at residues 133–136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of μ3, and also impacted μ1 and μ2 binding to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP‐3 suggesting that calcyon could regulate membrane‐bound pools of AP‐3 and AP‐3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP‐3, and AP‐3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol‐4‐kinase type II alpha (PI4KIIα), two well‐defined AP‐3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock‐out brain, a phenotype previously described in AP‐3 deficiencies. Altogether, our data suggest that calcyon directly interacts with μ3A and μ3B, and regulates the subcellular distribution of AP‐3 and the targeting of AP‐3 cargoes. 相似文献
7.
Ferreira LT Santos MS Kolmakova NG Koenen J Barbosa J Gomez MV Guatimosim C Zhang X Parsons SM Prado VF Prado MA 《Journal of neurochemistry》2005,94(4):957-969
The vesicular acetylcholine transporter (VAChT) regulates the amount of acetylcholine stored in synaptic vesicles. However, the mechanisms that control the targeting of VAChT and other synaptic vesicle proteins are still poorly comprehended. These processes are likely to depend, at least partially, on structural determinants present in the primary sequence of the protein. Here, we use site-directed mutagenesis to evaluate the contribution of the C-terminal tail of VAChT to the targeting of this transporter to synaptic-like microvesicles in cholinergic SN56 cells. We found that residues 481-490 contain the trafficking information necessary for VAChT localization and that within this region L485 and L486 are strictly necessary. Deletion and alanine-scanning mutants lacking most of the carboxyl tail of VAChT, but containing residues 481-490, were still targeted to microvesicles. Moreover, we found that clathrin-mediated endocytosis of VAChT is required for targeting to microvesicles in SN56 and PC12 cells. The data provide novel information on the mechanisms and structural determinants necessary for VAChT localization to synaptic vesicles. 相似文献
8.
Liang Zhang Xinlin Liang Tomáš Takáč George Komis Xiaojuan Li Yuan Zhang Miroslav Ovečka Yanmei Chen Jozef Šamaj 《Plant biotechnology journal》2023,21(2):250-269
In plants, membrane compartmentalization requires vesicle trafficking for communication among distinct organelles. Membrane proteins involved in vesicle trafficking are highly dynamic and can respond rapidly to changes in the environment and to cellular signals. Capturing their localization and dynamics is thus essential for understanding the mechanisms underlying vesicular trafficking pathways. Quantitative mass spectrometry and imaging approaches allow a system-wide dissection of the vesicular proteome, the characterization of ligand-receptor pairs and the determination of secretory, endocytic, recycling and vacuolar trafficking pathways. In this review, we highlight major proteomics and imaging methods employed to determine the location, distribution and abundance of proteins within given trafficking routes. We focus in particular on methodologies for the elucidation of vesicle protein dynamics and interactions and their connections to downstream signalling outputs. Finally, we assess their biological applications in exploring different cellular and subcellular processes. 相似文献
9.
Visualization and trafficking of the vesicular acetylcholine transporter in living cholinergic cells 总被引:2,自引:0,他引:2
Santos MS Barbosa J Kushmerick C Gomez MV Prado VF Prado MA 《Journal of neurochemistry》2000,74(6):2425-2435
The present experiments investigated the trafficking of the vesicular acetylcholine transporter (VAChT) tagged with the enhanced green fluorescent protein (EGFP) in living cholinergic cells (SN56). The EGFP-VAChT chimera was located in endosomal-like compartments in the soma of SN56 cells, and it was also targeted to varicosities of neurites. In contrast, EGFP alone in cells was soluble in the cytoplasm. The C-terminal cytoplasmic tail of VAChT has been implicated in targeting of VAChT to synaptic vesicles; thus, we have examined the role of the C-terminal region in the trafficking to varicosities. A C-terminal fragment tagged with EGFP appeared to be selectively accumulated in varicosities when expressed in SN56 cells. Interestingly, the protein was not freely soluble in the cytosol, and it presented a punctate pattern of expression. However, EGFP-C terminus did not present this peculiar pattern of expression in a nonneuronal cell line (HEK 293). Moreover, the C-terminal region of VAChT did not seem to be essential for VAChT trafficking, as a construct that lacks the C-terminal tail was, similar to EGFP-VAChT, partially targeted to endocytic organelles in the soma and sorted to varicosities. These experiments visualize VAChT for the first time in living cells and suggest that there might be multiple signals that participate in trafficking of VAChT to sites of synaptic vesicle accumulation. 相似文献
10.
Disruption of adaptor protein 2μ (AP‐2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing 下载免费PDF全文
Zhizi Jing Andreas Neef Natalia H Revelo Hanan Al‐Moyed Sandra Meese Sonja M Wojcik Iliana Panou Haydar Bulut Peter Schu Ralf Ficner Ellen Reisinger Silvio O Rizzoli Jakob Neef Nicola Strenzke Volker Haucke Tobias Moser 《The EMBO journal》2015,34(21):2686-2702
Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2μ (AP‐2μ) is required for release site replenishment and hearing. We show that hair cell‐specific disruption of AP‐2μ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane‐proximal vesicles and intact endocytic membrane retrieval. Sound‐driven postsynaptic spiking was reduced in a use‐dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome‐like vacuoles, fewer clathrin‐coated endocytic intermediates, and vesicle depletion of the membrane‐distal synaptic ribbon in AP‐2μ‐deficient IHCs, indicating a further role of AP‐2μ in clathrin‐dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP‐2 sorts its IHC‐cargo otoferlin. We propose that binding of AP‐2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP‐2 in synaptic vesicle reformation. 相似文献
11.
Neurotransmitters and hormones are released from neurosecretory cells by exocytosis (fusion) of synaptic vesicles, large dense-core vesicles and other types of vesicles or granules. The exocytosis is terminated and followed by endocytosis (retrieval). More than fifty years of research have established full-collapse fusion and clathrin-mediated endocytosis as essential modes of exo-endocytosis. Kiss-and-run and vesicle reuse represent alternative modes, but their prevalence and importance have yet to be elucidated, especially in neurons of the mammalian CNS. Here we examine various modes of exo-endocytosis across a wide range of neurosecretory systems. Full-collapse fusion and kiss-and-run coexist in many systems and play active roles in exocytotic events. In small nerve terminals of CNS, kiss-and-run has an additional role of enabling nerve terminals to conserve scarce vesicular resources and respond to high-frequency inputs. Full-collapse fusion and kiss-and-run will each contribute to maintaining cellular communication over a wide range of frequencies. 相似文献
12.
Trafficking of yellow-fluorescent-protein-tagged mu1 subunit of clathrin adaptor AP-1 complex in living cells 总被引:1,自引:0,他引:1
Clathrin adaptor protein AP-1 complex is thought to function in forming clathrin-coated vesicles at the trans -Golgi network (TGN) and mediating transport of cargo between the TGN and endosomes. To study trafficking of AP-1 in living cells, yellow fluorescent protein (YFP) was inserted in the middle of µ1 A subunit of AP-1. When expressed in a tetracycline-dependent manner in HeLa cells, YFP-µ1 was efficiently incorporated into the AP-1 complex, replacing endogenous µ1 in most of cellular AP-1. Time-lapse imaging revealed that YFP-µ1/AP-1 departs from TGN as isolated vesicles and spherical structures, or varicosities, associated with fine tubular processes. Typically, several vesicles or varicosities were seen moving sequentially along the same 'tracks' from TGN to cell periphery. These data suggest that AP-1 may function after formation of Golgi transport intermediates in facilitating their intracellular movement. Mutagenesis of YFP-µ1 determined that the structural requirements for its binding to tyrosine-containing sequence motifs are similar to those previously defined in µ2 subunit of AP-2. Moreover, the carboxyl-terminal half of µ2 could replace the corresponding fragment of µ1 without loss of the ability of the resulting µ1-YFP-µ2 chimeric protein to incorporate into AP-1 and bind tyrosine-containing motifs. Mutations that abolish binding capacity for tyrosine motifs did not mistarget AP-1 in the cell, suggesting that AP-1 interactions with this type of sorting signals are not essential for membrane docking of AP-1 at the TGN. Altogether, this study demonstrates that YFP-tagged µ1 protein can serve as a useful tool for visualizing the dynamics of AP-1 in living cells and for the structure-function analysis of µ1–cargo interactions. 相似文献
13.
14.
Vinatier J Herzog E Plamont MA Wojcik SM Schmidt A Brose N Daviet L El Mestikawy S Giros B 《Journal of neurochemistry》2006,97(4):1111-1125
In the nerve terminal, neurotransmitter is actively packaged into synaptic vesicles before its release by Ca2+-dependent exocytosis. The three vesicular glutamate transporters (VGLUT1, -2 and -3) are highly conserved proteins that display similar bioenergetic and pharmacological properties but are expressed in different brain areas. We used the divergent C-terminus of VGLUT1 as a bait in a yeast two-hybrid screen to identify and map the interaction between a proline-rich domain of VGLUT1 and the Src homology domain 3 (SH3) domain of endophilin. We further confirmed this interaction by using different glutathione-S-transferase-endophilin fusion proteins to pull down VGLUT1 from rat brain extracts. The expression profiles of the two genes and proteins were compared on rat brain sections, showing that endophilin is most highly expressed in regions and cells expressing VGLUT1. Double immunofluorescence in the rat cerebellum shows that most VGLUT1-positive terminals co-express endophilin, whereas VGLUT2-expressing terminals are often devoid of endophilin. However, neither VGLUT1 transport activity, endophilin enzymatic activity nor VGLUT1 synaptic targeting were altered by this interaction. Overall, the discovery of endophilin as a partner for VGLUT1 in nerve terminals strongly suggests the existence of functional differences between VGLUT1 and -2 terminals in their abilities to replenish vesicle pools. 相似文献
15.
Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways ("canonical" and "noncanonical"). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the μ2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called "DEP domain." We report here the crystal structure of a chimeric protein that mimics the Dvl2-μ2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of μ2. This domain:domain interface shows that parts of the μ2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-μ2 contact or in the tyrosine motif reduce affinity of Dvl2 for μ2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events. 相似文献
16.
Adenosine Triphosphate and the Late Steps in Calcium-dependent Exocytosis at a Ribbon Synapse 下载免费PDF全文
Ruth Heidelberger 《The Journal of general physiology》1998,111(2):225-241
The ATP dependence of the kinetics of Ca2+-dependent exocytosis after flash photolysis of caged Ca2+ was studied by capacitance measurements with submillisecond resolution in single synaptic terminals of retinal bipolar neurons. After control experiments verified that this combination of techniques is valid for the study of exocytosis in synaptic terminals, a comparison was made between the Ca2+ dependence of the rate of exocytosis in synaptic terminals internally dialyzed with MgATP, MgATP-γ-S, or no added Mg2+ or nucleotide. The Ca2+ threshold for release, the maximum rate of release, and the overall relationship between the rate of synaptic vesicle fusion and [Ca2+]i were found to be independent of MgATP. A decrease in the average rate at near-threshold [Ca2+]i was observed in terminals with MgATP-γ-S, but due to the small sample size is of unclear significance. The Ca2+ dependence of the delay between the elevation of [Ca2+]i and the beginning of the capacitance rise was also found to be independent of MgATP. In contrast, MgATP had a marked effect on the ability of terminals to respond to multiple stimuli. Terminals with MgATP typically exhibited a capacitance increase to a second stimulus that was >70% of the amplitude of the first response and to a third stimulus with a response amplitude that was >50% of the first, whereas terminals without MgATP responded to a second stimulus with a response <35% of the first and rarely responded to a third flash. These results suggest a major role for MgATP in preparing synaptic vesicles for fusion, but indicate that cytosolic MgATP may have little role in events downstream of calcium entry, provided that [Ca2+]i near release sites is elevated above ≈30 μM. 相似文献
17.
The vesicular acetylcholine transporter (VAChT) contains six conserved sequence motifs that are rich in proline and glycine. Because these residues can have special roles in the conformation of polypeptide backbone, the motifs might have special roles in conformational changes during transport. Using published bioinformatics insights, the amino acid sequences of the 12 putative, helical, transmembrane segments of wild-type and mutant VAChTs were analyzed for propensity to form non-alpha-helical conformations and molecular notches. Many instances were found. In particular, high propensity for kinks and notches are robustly predicted for motifs D2, C and C'. Mutations in these motifs either increase or decrease Vmax for transport, but they rarely affect the equilibrium dissociation constants for ACh and the allosteric inhibitor, vesamicol. The near absence of equilibrium effects implies that the mutations do not alter the backbone conformation. In contrast, the Vmax effects demonstrate that the mutations alter the difficulty of a major conformational change in transport. Interestingly, mutation of an alanine to a glycine residue in motif C significantly increases the rates for reorientation across the membrane. These latter rates are deduced from the kinetics model of the transport cycle. This mutation is also predicted to produce a more flexible kink and tighter tandem notches than are present in wild-type. For the full set of mutations, faster reorientation rates correlate with greater predicted propensity for kinks and notches. The results of the study argue that conserved motifs mediate conformational changes in the VAChT backbone during transport. 相似文献
18.
Regulation of fusion pore closure and compound exocytosis in neuroendocrine PC12 cells by SCAMP1 总被引:1,自引:0,他引:1
During exocytosis, neuroendocrine cells can achieve partial release of stored secretory products from dense core vesicles (DCVs) by coupling endocytosis directly at fusion sites and without full discharge. The physiological role of partial secretion is of substantial interest. Much is known about SNARE-mediated initiation of exocytosis and dynamin-mediated completion of endocytosis, but little is known about coupling events. We have used real-time microscopy to examine the role of secretory carrier membrane protein SCAMP1 in exo-endocytic coupling in PC12 cells. While reduced SCAMP1 expression is known to impede dilation of newly opened fusion pores during onset of DCV exocytosis, we now show that SCAMP1 deficiency also inhibits closure of fusion pores after they have opened. Inhibition causes accumulation of fusion figures at the plasma membrane. Closure is recovered by restoring expression and accelerated slightly by overexpression. Interestingly, inhibited pore closure resulting from loss of SCAMP1 appears to increase secondary fusion of DCVs to already-fused DCVs (compound exocytosis). Unexpectedly, reinternalization of expanded DCV membranes following compound exocytosis appears to proceed normally in SCAMP1-deficient cells. SCAMP1's apparent dual role in facilitating dilation and closure of fusion pores implicates its function in exo-endocytic coupling and in the regulation of partial secretion. Secondarily, SCAMP1 may serve to limit the extent of compound exocytosis. 相似文献
19.
Tokumitsu H Hatano N Yokokura S Sueyoshi Y Nozaki N Kobayashi R 《FEBS letters》2006,580(24):5797-5801
Numb is thought to participate in clathrin-dependent endocytosis by directly interacting with the clathrin-associated adaptor complex AP-2, although the underlying mechanisms are unknown. Numb is also known to be phosphorylated at Ser(264)in vitro and in vivo. Here, we found that Numb is phosphorylated in vitro by Ca(2+)/calmodulin-dependent protein kinase I on Ser(283). This phosphorylation was also observed in transfected COS-7 cells, indicating its physiological relevance. Pull-down experiments showed that the phosphorylation of Numb impaired its binding to the AP-2 complex and simultaneously recruited 14-3-3 proteins in vitro. Based on experiments using Numb mutants, both the initial phosphorylation of Ser(264) and the subsequent phosphorylation of Ser(283) are sufficient to abolish the binding of Numb to AP-2 and to promote the interaction with 14-3-3 protein. These findings suggest a novel mechanism for the regulation of Numb-mediated endocytosis, namely through direct phosphorylation. 相似文献
20.
The AP-3 adaptor protein complex has been implicated in the biogenesis of lysosome-related organelles, such as pigment granules/melanosomes,
and synaptic vesicles. Here we compare the relative importance of AP-3 in the biogenesis of these organelles in Drosophila melanogaster. We report that the Drosophila pigmentation mutants orange and ruby carry genetic lesions in the σ3 and β3-adaptin subunits of the AP-3 complex, respectively. Electron microscopy reveals dramatic
reductions in the numbers of electron-dense pigment granules in the eyes of these AP-3 mutants. Mutant flies also display
greatly reduced levels of pigments housed in these granules. In contrast, electron microscopy of retinula cells reveals numerous
synaptic vesicles in both AP-3 mutant and wild-type flies, while behavioral assays show apparently normal locomotor ability
of AP-3 mutant larvae. Together, these results demonstrate that Drosophila AP-3 is critical for the biogenesis of pigment
granules, but is apparently not essential for formation of a major population of synaptic vesicles in vivo.
Received: 1 February 2000 / Accepted: 10 April 2000 相似文献