首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present investigation describes microbial production of an alkaline protease and its use in dehairing of buffalo hide. Bacillus cereus produced extracellular protease when grown on a medium containing starch, wheat bran and soya flour (SWS). The ammonium sulphate precipitated (ASP) enzyme was applied for dehairing of buffalo hide. Microscopic observation of longitudinal section of buffalo hide revealed that the epidermis was completely removed and hair was uprooted leaving empty follicles in the hide. The ASP enzyme was stable for one month at ambient temperature between 25–35 °C. Enzymatic dehairing may be a promising shift towards an environment-friendly leather processing method.  相似文献   

2.
An extracellular alkaline serine protease (called DHAP), produced by a Bacillus pumilus strain, demonstrates significant dehairing function. This protease is purified by hydrophobic interaction chromatography, ion exchange, and gel filtration. DHAP had a pI of 9.0 and a molecular weight of approximately 32,000 Dalton. It shows maximal activity at pH 10 and with a temperature of 55 degrees C; the enzyme activity can be completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP). The first 20 amino acid residues of the purified DHAP have been determined with a sequence of AQTVPYGIPQIKAPAVHAQG. Alignment of this sequence with other alkaline protease demonstrates its high homology with protease from another B. pumilus strain.  相似文献   

3.
AIMS: To characterize and optimize a novel Bacillus pumilus strain isolated from biological waste which produces protease with excellent dehairing effect. This newly isolated strain could be utilized in the industrial leather dehairing process. METHODS AND RESULTS: Bacterial strains secreting proteases were screened from biological wastes. Positive clones were further characterized by analysing their efficacy in dehairing and effects on collagen integrity. Among 171 colonies tested, a strain BA06, identified as B. pumilus, was picked owing to its efficient dehairing capabilities with minimal impact on collagen. By combined mutagenesis using UV, N-methyl-N'-nitro-N-nitrosdguanidine and Co(60)-gamma-rays, this strain was further improved with regard to its alkaline protease production. The alkaline protease activity of the mutant strain SCU11was greatly improved up to 6000 U ml(-1), in comparison with its parent strain BA06 of 1200 U ml(-1). CONCLUSIONS: By using screening and mutagenesis methods, we have successfully created a B. pumilus strain that can produce high levels of alkaline proteases that are able to efficiently remove hair from skin with minimal damage on the collagen. SIGNIFICANCE AND IMPACT OF THE STUDY: This strain could be used in commercial alkaline protease production for leather dehairing.  相似文献   

4.
The proteases are enzymes produced by several filamentous fungi with important biotechnological applications. In this work, a protease from Aspergillus flavus was characterized. The culture filtrate of A. flavus was purified to homogeneity by Sephacryl S-200 column chromatography followed by CM–cellulose. The molecular weight of the purified enzyme was estimated to be approximately 32?kDa by SDS–PAGE. The enzyme hydrolysed BTpNA (N-α-benzoyl-dl-tyrosyl-p-nitroanilide), azo-casein and casein as substrates. Optimal temperature and pH were 55?°C and 6.5, respectively. The enzyme was stimulated by Mg2+, Ca2+, Zn2+ and inhibited by Hg2+ and Ag2+ and Cu2+. The protease showed increased activity with detergents, such as Tween 80 and Triton X, and was stable to the reducing agents, such as β-mercaptoethanol. The protease activity was strongly inhibited in the presence of phenylmethylsulfonyl fluoride, indicating it is a serine protease. The enzyme entrapped in calcium alginate beads retained its activity for longer time and could be reused up to 10 times. The thermostability was increased after the immobilization and the enzyme retained 100% of activity at 45?°C after 60?min of incubation, and 90% of residual activity at 50?°C after 30?min. In contrast, the free enzyme only retained 10% of its residual activity after 60?min at 50?°C. The enzymatic preparation was demonstrated to be efficient in the capability of dehairing without destruction of the hide. The remarkable properties such as temperature, pH and immobilization stability found with this enzyme assure that it could be a potential candidate for industrial applications.  相似文献   

5.
A novel gram-positive, strictly aerobic, motile, sporulating, and facultatively alkaliphilic bacterium designated KSM-KP43 was isolated from a sample of soil. The results of 16S rRNA sequence analysis placed this bacterium in a cluster with Bacillus halmapalus. However, the level of the DNA-DNA hybridization of KSM-KP43 with B. halmapalus was less than 25%. Moreover, the G + C contents of the genomic DNA were 41.6 mol% for KSM-KP43 and 38.6 mol% for B. halmapalus. Because there were also differences in physiological properties and cellular fatty acid composition between the two organisms, we propose KSM-KP43 as a novel species of alkaliphilic Bacillus. This novel strain produces a new class of protease, an oxidatively stable serine protease that is suitable for use in bleach-based detergents. The enzyme contained 640 amino acid residues, including a possible approximately 200-amino-acid prepropeptide in the N-terminal and a unique stretch of approximately 160 amino acids in the C-terminal regions (434-amino-acid mature enzyme with a calculated molecular mass of 45,301 Da). The C-terminal half after the putative catalytic Ser255 and the contiguous C-terminal extension shared local similarity to internal segments of a membrane-associated serine protease of a marine microbial assemblage and the serine protease/ABC transporter precursors of the slime mold Dictyostelium discoideum, and to the C-terminal half of a cold-active alkaline serine protease of a psychrotrophic Shewanella strain.  相似文献   

6.
An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37°C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH4)2SO4 precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60°C; however, it is shifted to 70°C after addition of 5 mM Ca2+ ions. The enzyme was stable between 30 and 40°C for 2 h at pH 10.5; only 14% activity loss was observed at 50°C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0–12.2 range for 24 h at 30°C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol−1 (44.30 kJ mol−1). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30°C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3′-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k cat value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K m and k cat values were estimated at 0.655 μM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21×103 min−1, respectively.  相似文献   

7.
An investigation was conducted on the enhancement of production and purification of an oxidant and SDS-stable alkaline protease (BHAP) secreted by an alkalophilic Bacillus horikoshii, which was screened from the body fluid of a unique Korean polychaeta (Periserrula leucophryna) living in the tidal mud flats of Kwangwha Island in the Korean West Sea. A prominent effect on BHAP production was obtained by adding 2% maltose, 1% sodium citrate, 0.8% NaCl, and 0.6% sodium carbonate to the culturing medium. The optimal medium for BHAP production contained (g/l) SBM, 15; casein, 10; K(2)HPO(4), 2; KH(2)PO(4), 2; maltose, 20; sodium citrate, 10; MgSO(4), 0.06; NaCl, 8; and Na(2)CO(3), 6. A protease yield of approximately 56,000 U/ml was achieved using the optimized medium, which is an increase of approximately 5.5-fold compared with the previous optimization (10,050 U/ml). The BHAP was homogenously purified 34-fold with an overall recovery of 34% and a specific activity of 223,090 U/mg protein using adsorption with Diaion HPA75, hydrophobic interaction chromatography (HIC) on Phenyl-Sepharose, and ion-exchange chromatography on a DEAE- and CMSepharose column. The purified BHAP was determined a homogeneous by SDS-PAGE, with an apparent molecular mass of 28 kDa, and it showed extreme stability towards organic solvents, SDS, and oxidizing agents. The K(m) and k(cat) values were 78.7 μM and 217.4 s(-1) for N-succinyl-Ala- Ala-Pro-Phe-pNA at 37° C and pH 9, respectively. The inhibition profile exhibited by PMSF suggested that the protease from B. horikoshii belongs to the family of serine proteases. The BHAP, which showed high stability against SDS and H(2)O(2), has significance for industrial application, such as additives in detergent and feed industries.  相似文献   

8.
Summary We have cloned and sequenced a gene (epr) encoding a novel serine protease from Bacillus subtilis. Several active forms of the enzyme with molecular masses between 40 and 34 kDa were found in the medium of B. subtilis cultures containing the epr gene cloned on a plasmid. Deletions at the 3 end of the gene, removing up to 240 amino acids of the reading frame, abolished the expression of the larger species but did not affect the expression of the 34 kDa enzyme. The C-terminal third of the protein is therefore not required for protease activity. The size variation of the active forms expressed by the complete epr gene appears to be the result of partial removal of the C-terminus either by processing or degradation. Thus, the epr gene consists of two domains, one encoding a serine protease homologous to subtilisin and the other a C-terminus of unknown function.Parts of this work were presented at the Fourth International Conference on Genetics and Biotechnology of Bacilli, San Diego, 1987  相似文献   

9.
The purification and characterization of a Mn2+-dependent alkaline serine protease produced by Bacillus pumilus TMS55 were investigated. The enzyme was purified in three steps: concentrating the crude enzyme using ammonium sulfate precipitation, followed by gel filtration and cation-exchange chromatography. The purified protease had a molecular mass of approximately 35 kDa, was highly active over a broad pH range of 7.0 to 12.0, and remained stable over a pH range of 7.5 to 11.5. The optimum temperature for the enzyme activity was found to be 60 degreesC. PMSF and AEBSF (1 mM) significantly inhibited the protease activity, indicating that the protease is a serine protease. Mn2+ ions enhanced the activity and stability of the enzyme. In addition, the purified protease remained stable with oxidants (H2O2, 2%) and organic solvents (25%), such as benzene, hexane, and toluene. Therefore, these characteristics of the protease and its dehairing ability indicate its potential for a wide range of commercial applications.  相似文献   

10.
The effects of oxygen transfer on the production and product distribution in serine alkaline protease (SAP) fermentation by Bacillus licheniformis and oxygen-transfer strategy in relation to the physiology of the bacilli were investigated on a defined medium with citric acid as sole carbon source in 3.5-dm(3) batch bioreactor systems. By forming a 3 x 3 matrix with the parameters air-inlet rates of Q(O)/V(R) = 0.2, 0.5, 1.0 vvm, and agitation rates of N = 150, 500, 750 min(-1), the effects of oxygen transfer were investigated at nine different conditions. The concentrations of the product SAP and by-products, i.e., neutral protease, alpha-amylase, amino acids, and organic acids, and SAP activities were determined throughout the bioprocess. Among the constant air-flow and agitation-rate fermentations, Q(O)/V(R) = 0.5 vvm, N = 750 min(-1) oxygen-transfer conditions produced maximum SAP activity that was 500 U cm(-3), at t = 37 h. With the increase in Q(O)/V(R) and/or N, Damk?hler number that is the oxygen-transfer limitation decreases; and the process passes from oxygen-transfer limited conditions to biochemical-reaction limited conditions. Further increase in SAP activity, A = 680 U cm(-3) was achieved by applying an oxygen-transfer strategy based on the analysis of the data obtained with the constant oxygen-transfer condition experiments, with a step increase in air-inlet rate, from Q(O)/V(R) = 0.2 to Q(O)/V(R) = 0.5 vvm at N = 750 min(-1) constant agitation rate at t = 24 h. Organic acids and amino acids that were excreted to the fermentation medium varied depending on the oxygen-transfer conditions. With the increase in oxygen-transfer rate acetic acid concentration increased; contrarily, with the decrease in the oxygen-transfer rate the TCA-cycle organic acids alpha-ketoglutaric and succinic acids, and gluconic acid were excreted to the fermentation broth; nevertheless, the application of the oxygen-transfer strategy prevented the increase in acetic acid concentration between t = 35-38 h. Under all the oxygen-transfer conditions, the amino acid having the highest concentration and the amino acid that was not excreted to the fermentation broth were lysine and asparagine, respectively; both of which belong to the aspartic acid-group amino acids. Further, this result indicates the requirement of the genetic regulation directed to the aspartic acid-group enzymes for the progress in SAP production in B. licheniformis.  相似文献   

11.
A new protease named NJP with fibrinolytic activity was isolated from Neanthes japonica (Izuka), by a combination of ammonium sulfate fractionation, hydrophobic chromatography, ion-exchange chromatography and gel filtration. The molecular mass of NJP was approximately 28.6-33.5kDa as estimated by MALDI-TOF mass spectrometry and SDS-PAGE, which revealed a monomeric form of the protease. The isoelectric point of NJP determined by 2-DE was 9.2. NJP was stable in the range of pH 7.0-11.0 with a maximum enzymatic activity at 40°C and pH 9.0. The hydrolyzing activity of NJP on fibrinogen started from the Aα-chain, followed by the Bβ-chain, and the γ-chain at last. NJP had also a higher specificity for the chromogenic substrate S-2238 for thrombin. NJP activity was completely inhibited by PMSF. Analysis of partial amino acid sequences showed that NJP had very low homology with other known fibrinolytic enzymes. These results indicate that NJP is a novel alkaline thrombin-like serine protease. Thus NJP may have potential applications in the prevention and treatment of thrombosis.  相似文献   

12.
In view of the functional similarities between subtilisin Carlsberg and the alkaline protease fromConidiobolus coronatus, the biochemical and structural properties of the two enzymes were compared. In spite of their similar biochemical properties, e.g., pH optima, heat stability, molecular mass, pI, esterase activity, and inhibition by diisopropyl fluorophosphate and phenylmethlysulfonylfluoride, the proteases were structurally dissimilar as revealed by (1) their amino acid compositions, (2) their inhibition by subtilisin inhibitor, (3) their immunological response to specific anti-Conidiobolus protease antibody, and (4) their tryptic peptide maps. Our results demonstrate that although they are functionally analogous, theConidiobolus protease is structurally distinct from subtilisin Carlsberg. TheConidiobolus protease was also different from other bacterial and animal proteases (e.g. pronase, protease K, trypsin, and chymotrypsin) as evidenced by their lack of response to anti-Conidiobolus protease antibody in double diffusion and in neutralization assays. TheConidiobolus serine protease fails to obey the general rule that proteins with similar functions have similar primary sequences and, thus, are evolutionarily related. Our results strengthen the concept of convergent evolution for serine proteases and provide basis for research in evolutionary relationships among fungal, bacterial, and animal proteases.  相似文献   

13.
ABSTRACT

Potato common scab, caused by Streptomyces spp., is one of the leading causes of heavy commercial losses in the potato industry and is thus one of the most serious plant diseases worldwide. This study identified and assessed potential biocontrol agents against potato common scab. In total, 110 isolates were obtained through antagonistic tests; among which, Bacillus sp. strain AMCC 101304 was found to be most effective at inhibiting the potato common scab pathogen, Streptomyces scabies. Bacillus sp. strain AMCC 101304 was finally identified as Bacillus altitudinis by morphological observation, physiological and biochemical experimentation, as well as 16S rRNA sequencing and phylogenetic analysis. Pot experiments were conducted twice (in spring and autumn) to verify the biocontrol effect of B. altitudinis AMCC 101304 against potato common scab. In spring, the control efficiency reached 76.34%. In autumn, the disease incidence was reduced from 100% to 34.19% (one treatment with strain AMCC 101304) and 38.42% (two treatments with strain AMCC 101304), and the control efficiency reached 82.50% (one application) and 78.43% (two applications). The present study demonstrated the potential of an isolate, identified as B. altitudinis AMCC 101304, as an effective biocontrol agent for future use in the field.  相似文献   

14.
To obtain a new serine protease from alkalophilic Bacillus sp. NKS-21, shotgun cloning was carried out. As a result, a new protease gene was obtained. It encoded an intracellular serine protease (ISP-1) in which there was no signal sequence. The molecular weight was 34,624. The protease showed about 50% homology with those of intracellular serine proteases (ISP-1) from Bacillus subtilis, B. polymyxa, and alkalophilic Bacillus sp. No. 221. The amino acid residues that form the catalytic triad, Ser, His and Asp, were completely conserved in comparison with subtilisins (the extracellular proteases from Bacillus). The cloned intracellular protease was expressed in Escherichia coli, and its purification and characterization were carried out. The enzyme showed stability under alkaline condition at pH 10 and tolerance to surfactants. The cloned ISP-1 digested well nucleoproteins, clupein and salmin, for the substrates.The nucleotide sequence data reported in this paper will appear in the GSDB, DDBJ, EMBL, and NCBI nucleotide sequence databases with the accession number D37921.  相似文献   

15.
Aspergillus species of fungi have been known to be one of the most prevalent aeroallergens. One important A. flavus allergen (Asp fl 1) was identified by means of immunoblotting with a serum pool of allergic patients on a two-dimensional electrophoretic gel. The cDNA coding for Asp fl 1 was cloned and sequenced. The clone encodes a full-length protein of 403 amino acid precursors of 42 kDa. After cleavage of a putative signal peptide of 21 amino acids and a prepeptide of 100 amino acids, a mature protein of 282 amino acids was obtained with a molecular mass of 33 kDa and a pI of 6.3. A degree of identity was found in a range of 27 to 84% among related allergens derived from bacteria allergen subtilisin, mold allergen Pen c 1, and virulence factor of A. fumigatus. Recombinant Asp fl 1 (rAsp fl 1) was cloned into vector pQE-30 and expressed in E. coli M15 as a histidine-tag fusion protein and purified to homogeneity. The IgE binding capacity of rAsp fl 1 was tested by immunoblotting using a serum pool of Aspergillus-allergic patients. Recombinant allergen cross-reacted strongly with IgE specific for natural Asp fl 1 and Pen c 1, indicating that common IgE epitopes may exist between allergens of A. flavus and P. citrinum.  相似文献   

16.
Leather industries release a large amount of pollution-causing chemicals which creates one of the major industrial pollutions. The development of enzyme based processes as a potent alternative to pollution-causing chemicals is useful to overcome this issue. Proteases are enzymes which have extensive applications in leather processing and in several bioremediation processes due to their high alkaline protease activity and dehairing efficacy. In the present study, we report cloning, characterization of a Mn2+ dependent alkaline serine protease gene (MASPT) of Bacillus pumilus TMS55. The gene encoding the protease from B. pumilus TMS55 was cloned and its nucleotide sequence was determined. This gene has an open reading frame (ORF) of 1,149 bp that encodes a polypeptide of 383 amino acid residues. Our analysis showed that this polypeptide is composed of 29 residues N-terminal signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids. We performed bioinformatics analysis to compare MASPT enzyme with other proteases. Homology modeling was employed to model three dimensional structure for MASPT. Structural analysis showed that MASPT structure is composed of nine α-helices and nine β-strands. It has 3 catalytic residues and 14 metal binding residues. Docking analysis showed that residues S223, A260, N263, T328 and S329 interact with Mn2+. This study allows initial inferences about the structure of the protease and will allow the rational design of its derivatives for structure-function studies and also for further improvement of the enzyme.  相似文献   

17.
An organic solvent stable, alkaline serine protease (Bsubap-I) with molecular mass of 33.1 kDa, purified from Bacillus subtilis DM-04 showed optimum activity at temperature and pH range of 37–45 °C and 10.0–10.5, respectively. The enzyme activity of Bsubap-I was significantly enhanced in presence of Fe2+. The thermal resistance and stability and of Bsubap-I in presence of surfactants, detergents, and organic solvents, and its dehairing activity supported its candidature for application in laundry detergent formulations, ultrafiltration membrane cleaning, peptide synthesis and in leather industry. The broad substrate specificity and differential antibacterial property of Bsubap-I suggested the natural ecological role of this enzyme for the producing bacterium.  相似文献   

18.
We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH(2)-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (k(cat)/K(m)) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H(2)O(2), which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had an ORF of 1149bp encoding a protein of 383 aa organized into a signal peptide (29 aa), a pro-protein (79 aa) and a mature enzyme (275 aa). The deduced amino acid sequence inspection displays an important homology with other bacterial proteases. The highest homology of 98.1% was found with BPP-A protease from Bacillus pumilus MS-1, with only 8 aa of difference.  相似文献   

19.
Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry.  相似文献   

20.
Keratinases play an important role in biotechnological applications such as improvement of feather meal, enzymatic dehairing and production of amino acids or peptides from high molecular weight substrates. Bacillus subtilis P13, isolated from Vajreshwari hot spring (45–50°C) near Mumbai, India, produces a neutral serine protease and has an optimum temperature of 65°C. This enzyme preparation was keratinolytic in nature and could disintegrate whole chicken feathers, except for the remnants of shafts. The enzyme preparation also exhibited depilation of goat hides with the recovery of intact animal hair. The enzyme preparation could release peptides from ground feathers and bring about their weight reduction; however, similar action on hair was relatively weak. A single major PMSF-sensitive protease band could be detected upon zymogram analysis, indicating that a single enzyme may be responsible for feather degradation and hide depilation. The importance of these findings in the biotechnological application for feather and leather industries is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号