首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following the introductions carried out in late 1960s, Eastern cottontail Sylvilagus floridanus Allen, 1890 rapidly colonized the Po Plain (northern Italy), following the Po River and its tributaries. We monitored a cottontail population using the line-transect method from autumn 2005 to spring 2009 in a 8.2-km2 study area located along the Po River, and we investigated species habitat requirements by assessing the presence/absence of faecal pellets in 200 randomly distributed plots from September 2006 to August 2007 and by Resource Selection Probability Function through logistic regression analyses and multi-model inference. The cottontail population varied dramatically over time in size, with a great drop at the end of the breeding period. Cottontails selected foraging habitats at the macro- and micro-scales, with some differences among seasons. Two macro-habitat variables differed significantly between used and unused plots through seasons: arboriculture stands were always greater in presence plots, whereas winter cereals were always greater in absence ones. On the macro-level, woody and herbaceous habitats, such as fallow fields, characterized presence plots. At the micro-habitat level, presence plots were associated with permanent dense cover except during summer. Several logistic regression models were built through seasons and ranked using the Akaike’s Information Criterion. Arboriculture stands enhanced cottontail presence mostly during the growing season contrary to crop fields. Hedgerows were used according to availability during feeding activity. Cottontail habitat selection varied according to seasonal changes in resource availability and suitability of the different habitat types.  相似文献   

2.
The movement of frugivores between remnant forests and successional areas is vital for tropical forest tree species to colonize successional habitats. The response of these species to the spatial structure of pasture tree cover is largely unknown. We studied avian frugivores that were found in primary forest edges and large pastures in eastern Amazonia, Brazil. We determined how the small‐scale spatial structure of pasture trees at forest edges affects five response variables: bird presence, visitation rate, duration of visit, species richness, and an index accounting for species’ level of frugivory and abundance in forests. We used hierarchical linear models to estimate the effect of four predictor variables on response variables: (1) clustering of pasture trees; (2) percent canopy cover of pasture trees; (3) distance of pasture tree to forest edge; and (4) tree crown area. The study species, many of which are widely distributed in the Neotropics, were generally insensitive to percent cover and clustering of trees. Frugivore visitation to individual trees remained constant as cover increased. Visitation was positively correlated with focal tree distance to forest edge and crown area. The positive relationship between distance and visitation rates may be due to the increased abundance of some resource further from forests. If pastures were abandoned the distance from forest edges would not likely limit frugivore visitation and seed deposition under large pasture trees in our study (i.e., up to 200 m distant).  相似文献   

3.
In northern Italy, the native European hare (Lepus europaeus) and the introduced Eastern cottontail (Sylvilagus floridanus) can occur together at a local scale, as a result of cottontail introduction and expansion into the European hare range. Hare populations are limited in Italy by habitat loss, diseases, and most important by overhunting, and many areas within hare range in northern Italy are undergoing increasing anthropogenic impact. Therefore, quantitative studies on resource selection and exploitation by both species will be of great interest to evaluate the degree of habitat overlap and to search for exploitation competition evidences. We studied habitat selection during resting time by both species in two areas where they occur alone and in one area where they occur together. Habitat selection by the two species was examined at micro- and macro-habitat scales during autumn–winter and spring–summer. Both species selected ecotonal zones between arboriculture stands and crops and between arboriculture stands and spontaneous vegetation (i.e., herbaceous, bush, and woody permanent species), which were the less available in the area of sympatry. No habitat shifts were evident at macro-habitat level because the two species showed a differential micro-habitat use within patches. On the whole, it seems that habitat heterogeneity promoted daytime segregation between the two species. In particular, edges between crops and canopy habitats should be improved, thus reducing chance of intra- and inter-specific encounters.  相似文献   

4.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   

5.
We used radiotelemetry to investigate resting sites habitat selection by introduced eastern cottontail (Sylvilagus floridanus) and native European hare (Lepus europaeus) under sympatric conditions. We tracked 24 hares and 34 cottontails in a protected area of northwestern Italy. Hares were found in different sites every week, while cottontails used the same site for two weeks, and occasionally for longer. It is supposed that this periodic nest switching reduces the risk of predation and parasitism. Hares and cottontails forms were located in different habitats and characterized by dense vegetation cover near the ground. This cover increased from winter to summer in both species, while in autumn it continued to increase in cottontails only, and decreased in hares. Cottontails selected shrubby habitats near the river, and avoided crop fields in all seasons. Hares were more adaptive in their search, using high herbs and shrubs all year round, wheat fields in spring, maize in spring and summer, and stubbles in winter. Arguably, partial niche differentiation is necessary to allow the coexistence of similar species. In our study area, hares and cottontails differentiated in the use of resting sites habitats, presumably so as not to compete in this part of their ecological niche.  相似文献   

6.
The vegetation and environmental conditions of south Swedish hornbeam Carpinus betulus forests are described with data from 35 permanent sample plots The main floristic gradient of the ground vegetation is closely related to acid-base properties of the top soil base saturation, pH and organic matter content Other floristic differences are related to tree canopy cover and the distance of the sample plots to the Baltic coast Species richness of herbaceous plants typical of forests increases with soil pH, The number of other herbaceous species, occurring in both forests and open habitats, and of woody species is not related to pH Comparisons of vegetation data from 1983 and 1993 show relatively small compositional differences of the herbaceous forest flora The number of other herbaceous species increased considerably m those plots where canopy trees had been cut after 1983 The number of new species in managed plots increases with soil pH Species losses and gains of the herbaceous forest flora between 1983 and 1993 are generally lower as compared with other herbaceous species and woody species However, the ground cover of herbaceous forest species, especially of Oxalis acetosella and Lamium galeobdolon , was considerably lower in 1993 as compared to 1983 in both unmanaged and managed plots Possible explanations for this decrease are current soil acidification and drought during the growing season  相似文献   

7.
Forest fragmentation leads to the creation of isolated forest patches with subsequent impact on forest-interior flora and fauna. Forested corridors have been suggested to alleviate some of the impact by increasing the connectivity between remnant forest patches. However, both fragmentation and corridors increase the ratio of edge to core habitat. We studied nest predation of artificial nests at edges between I) contiguous forests and pastures and 2) forested corridors and pastures, in a forest-dominated landscape in the dry Chaco, Paraguay, The aim was lo determine if nest predation was higher near habitat edges compared to within forests and pastures, with special emphasis on edges at forested corridors. We found that predation rates were similar at edges and in interior habitats. Nest predation was higher for both ground and shrub nests in forested areas than in pastures, Predation rates were also higher for both ground and shrub nests at edges along forested corridors compared to edges neighbouring contiguous forests. Forested corridors connecting contiguous forests may thus act as an ecological sink for some species breeding here. Analysis of predator categories revealed that ground nests in pastures were relatively more depredated by mammals and less by birds, compared to both shrub nests in pastures and ground nests in forests.  相似文献   

8.
Secondary forests are an increasingly common feature in tropical landscapes worldwide and understanding their regeneration is necessary to design effective restoration strategies. It has previously been shown that the woody species community in secondary forests can follow different successional pathways according to the nature of past human activities in the area, yet little is known about patterns of herbaceous species diversity in secondary forests with different histories of land use. We compared the diversity and abundance of herbaceous plant communities in two types of Central Amazonian secondary forests—those regenerating on pastures created by felling and burning trees and those where trees were felled only. We also tested if plant density and species richness in secondary forests are related to proximity to primary forest. In comparison with primary forest sites, forests regenerating on non‐burned habitats had lower herbaceous plant density and species richness than those on burned ones. However, species composition and abundance in non‐burned stands were more similar to those of primary forest, whereas several secondary forest specialist species were found in burned stands. In both non‐burned and burned forests, distance from the forest edge was not related to herbaceous density and species richness. Overall, our results suggest that the natural regeneration of herbaceous species in secondary tropical forests is dependent on a site's post‐clearing treatment. We recommend evaluating the land history of a site prior to developing and implementing a restoration strategy, as this will influence the biological template on which restoration efforts are overlaid.  相似文献   

9.
In northern Italy, the range of the Eastern cottontail (Sylvilagus floridanus) largely overlaps with that of the native European hare (Lepus europaeus) on the Po Plain. Both species appear to have similar habitat requirements. We studied habitat selection by hares and cottontails during feeding activity from September 2006 to August 2007 in two areas where they occur alone (allopatry) and in one area where they occur together (sympatry). The three areas were basically similar, so that shifts in habitat use observed in sympatry should reflect the response to interspecific competition. Habitat selection was examined at micro- and macro-habitat levels throughout seasons. Habitat breadth of both species followed the change of resource availability through seasons in allopatry as well as in sympatry. No shifts in habitat use were evident at macro-habitat level, even during autumn which was the limiting season. Exploitation of shared habitats by the two species seems to be promoted by differential micro-habitat use within macro-habitat types. Cottontails used woods with dense understory in greater proportion than hares, and their present sites were concentrated within the maximum distance of 20 m of the nearest shelter site. Hares were more likely than cottontails to exploit crops, and their sites were distributed even greater than 80 m away from permanent cover patches. The habitat heterogeneity of agricultural ecosystems within the sympatry range could buffer the negative effects of external factors (climate, human disturbance and predation) on hares, and enhance the chances of exploitation of shared habitats by both species.  相似文献   

10.
The population decline of the European hare (Lepus europaeus) in Switzerland is generally attributed to low leveret survival. A significant intensification of agricultural practices led to a landscape transformation that reduced leveret survival by increasing negative factors such as predation pressure. Habitat improvement by means of wildflower strips has yielded some positive effects on European hare population trends, probably by improving food supply and providing year-round cover from predation. For this study, remote cameras were used to examine relationships between landscape and wildflower strip variables and the frequency of predator visits to wildflower strips as well as the probability of them visiting core areas of the strips. Of a total of 1586 visits of potential predators to wildflower strips, 91% were mammals and 9% were birds. Predators were more frequently observed at the edges of the wildflower strips than in their cores (72% of visits by mammalian predators and 76% by avian predators were at the edge). The results revealed that the frequency of observing predators was negatively correlated with adjacent crop height and the distance of the wildflower strip from settlements, roads and forests or hedgerows. The probability of a predator penetrating the core of the wildflower strip was negatively correlated with the vegetation cover, especially with the cover of wood, herbaceous plant species and teasel (Dipsacus fullonum). Appropriate management of wildflower strips by considering their spatial placement, creating low margin to surface area ratios and promoting heterogeneous wildflower structure can thus lead to reduced predator pressure on leverets as well as on ground-nesting birds.  相似文献   

11.
Edge effects are increasing in forest-dominated landscapes worldwide, due to increased fragmentation by other land uses. Understanding how species respond to edges is therefore critical to define adequate conservation measures. We compared the relative importance of interior and edge habitats for butterflies in a landscape composed of even-aged pine plantations interspersed with semi-natural habitats. Butterfly assemblages were surveyed simultaneously at the edge and the interior of 68 patches belonging to four main habitat types: herbaceous firebreaks, clearcuts and young pine stands, older pine stands, and deciduous woodlands. Butterfly species richness was higher at edges than in interior habitats, especially for pine stands. Assemblage composition differed significantly between edge and interior habitats, except for firebreaks. Of the 23 most abundant butterfly species, seven were significantly more abundant in one or all edge habitat types, five in interior habitats, and 11 species showed no edge-interior preference. Modelling the presence of individual species in edge habitats revealed the importance of habitat variables such as the abundance of nectar and host-plants, but also of the abundance of the same species in the adjacent interior habitat. Moreover, our results suggest that most species use several, different habitat types to find supplementary or complementary resources, including micro-climatic refuges to escape hot temperatures during summer. The use of adjacent edge and interior habitats by butterflies is probably a key process in such mosaic landscapes and underlines the importance of landscape heterogeneity for butterfly conservation.  相似文献   

12.
Land use change is a major threat to global biodiversity. Forest species face the dual threats of deforestation and intensification of forest management. In regions where forests are under threat, rural landscapes that retain structural components of mature forests potentially provide valuable additional habitat for some forest species. Here, we illustrate the habitat value of traditional wood pastures for a woodpecker assemblage of six species in southern Transylvania, Romania. Wood pastures are created by long-term stable silvo-pastoral management practices, and are composed of open grassland with scattered large, old trees. Because of their demanding habitat requirements, woodpeckers share habitat with many other bird species, and have been considered as possible indicator species for bird species diversity. We first compared woodpecker assemblages between forests and wood pastures. Second, we grouped features of wood pastures into three spatial contexts and addressed how these features related to the occurrence of three woodpecker species that are formally protected. Woodpecker species composition, but not the number of species, differed between forests and wood pastures, with the green woodpecker occurring more commonly in wood pastures, and the lesser spotted woodpecker more commonly in forests. Within wood pastures, the intermediate context (especially surrounding forest cover) best explained the presence of the grey-headed and middle spotted woodpecker. By contrast, variables describing local vegetation structure and characteristics of the surrounding landscape did not affect woodpecker occurrence in wood pastures. In contrast to many other parts of Europe, in which several species of woodpeckers have declined, the traditional rural landscape of Transylvania continues to provide habitat for several woodpecker species, both in forests and wood pastures. Given the apparent habitat value of wood pastures for woodpeckers we recommend wood pastures be explicitly considered in relevant policies of the European Union, namely the Habitats Directive and the EU Common Agricultural Policy.  相似文献   

13.
The composition of herbaceous vegetation was evaluated with the aim of characterizing forests at various ages of stand development. Herb stems were sampled in 250 4‐m² square plots distributed within six habitat types. A total of 36 herb species belonging to 15 families were recorded. Species richness did not significantly differ between habitat types. Most herb species occurred in all habitat types and were therefore generalists. However, a few indicator herb species were detected, and the results roughly suggested that herb species of the families Poaceae and Araceae were indicative of late successional forests; Zingiberaceae are indicative of early successional forests; and Commelinaceae, Costaceae, Cyperaceae and Marantaceae are indicators of flooded habitats. Species diversity and stem density of herbaceous plants did not change with forest succession as a decrease in abundance and frequency of occurrence of pioneer species in late successional forests was counterbalanced by the presence of generalist and late successional species. However, increasing proportions of dwarf stems in late successional forests translated to changes in the vertical structure of herbaceous plant communities. Herbivory pressure by gorillas did not have a notable effect on herbaceous plant community development. This study contributes to the definition of herbaceous ecological indicators of forest succession in different settings.  相似文献   

14.
Habitat fragmentation often induces edge effects that can increase, decrease or have minimal effect upon the population density of a species, depending upon environmental conditions and the requirements of the species. Using a trapping study and generalized linear mixed models, we evaluated edge effects on small tropical mammals living near roads, including two ground‐dwelling (Akodon sp. and Cerradomys subflavus) and two arboreal (Marmosops incanus and Rhipidomys sp.) species. We examined the relationship of these edge effects to environmental factors at both plot and patch scales. Generalist ground‐dwelling species were attracted to edges, with higher population densities recorded in habitats close to road or matrix edges where vegetation density was lower. In contrast, populations of the generalist arboreal species avoided edge habitats, their populations were found in greater density in habitats far from roads/matrix edges. Thus, our results show that patterns of edge habitat utilization were related to the ecological requirements of each species. These findings are especially important in the tropics, where demand for economic growth in many countries has accelerated the fragmentation process and has recently culminated in increased road construction and expansion. Fragmented habitats promote an increase in edge environments, and consequently will reduce the abundance of arboreal small mammal species, such as those used as models in this study.  相似文献   

15.
Abstract. Successional patches are a large component of forest ecosystems throughout the world and their vegetation composition is conditioned by multiple factors such as land use history, disturbances, environmental conditions and landscape context. We investigated the relative contribution of historical, environmental, biotic and spatial factors in determining vegetation composition and invasion by exotic species in secondary forest patches of Sierra de San Javier, Tucumán, Argentina. We estimated canopy cover for shrub, vine and tree species distributed over 51 patches with known land use history. We also recorded environmental, historical and spatial variables and used multivariate techniques to explore the relationship between forest composition and explanatory variables. Land use, time since abandonment, altitude, slope and cover of different strata were related to the vegetation pattern in the study site, and they were all significantly structured over space. Exotic species appeared to differ from natives in their response to explanatory variables. Overall, exotic species were dominant on the edges of young patches originated from herbaceous crops, but the total number of exotic species was related to the distance to urban areas and small farms identified as potential sources of exotic propagules. Vegetation composition of secondary forests in NW Argentina was related to historical and environmental factors, but spatial variables strongly influenced vegetation composition as well as the variation in explanatory variables.  相似文献   

16.
Edge contrast, is one of the main determinants of edge effects. This study examines the response of plant and pollinator diversity (bees and butterflies) to forest edge contrast, i.e. the difference between forests and adjacent open habitats with different disturbance regimes. We also investigated a potential cascading effect from plants to pollinators and whether edge structure and landscape composition mediate the relationship between edge contrast and beta diversity of pollinators. We sampled 51 low-contrast edges where forests were adjacent to habitats showing low levels of disturbance (i.e. grey dunes, mowed fire-breaks, orchards, grasslands) and 29 high-contrast edges where forests were adjacent to more intensively disturbed habitats (i.e. tilled firebreaks, oilseed rape) in three regions of France. We showed that plant diversities were higher in edges than in adjacent open habitat, whatever the edge contrast. However, plant beta diversity did not differ significantly between low and high-contrast edges. While we observed higher pollinator diversities in adjacent habitats than in low-contrast edges, there were no significant differences in pollinator beta diversity depending on edge contrast. We did not observe a cascading effect from plants to pollinators. Plant and bee beta diversities were mainly explained by local factors (edge structure and flower cover) while butterfly beta diversity was explained by surrounding landscape characteristics (proportion of land cover in grassland).  相似文献   

17.
An obvious consequence of habitat fragmentation is an increasing role of habitat edges for species survival. Recently it has been suggested that the endangered butterfly Maculinea nausithous prefers forested edges of its meadow habitats. However, the prevalence of forests in the study area used for this analysis makes it impossible to distinguish whether the effect detected is a genuine preference for forest edges or a preference for any natural patch edges as opposed to patch interiors. We investigated habitat selection by Maculinea nausithous and Maculinea teleius occurring sympatrically at five habitat patches surrounded by mosaic landscape. Butterfly capture positions were marked with GPS and subsequently analysed with GIS software. Both species avoided the interiors of their patches and concentrated in the edge zone, but these preferences were visible only at three larger patches exceeding 1 ha in area. Among different types of edges those bordering densely built-up areas were avoided, whereas all natural edges (adjacent to forests, reeds or grasslands) were similarly used. We hypothesise that preferences towards natural patch edges, regardless of their type, can be explained by the spatial interactions between Maculinea butterflies and Myrmica ants they parasitise. Patch surroundings constitute refuge space for the ants, and hence their densities may be expected to be higher near patch edges. Our findings indicate the importance of patch surroundings for the persistence of Maculinea populations. Regretfully, current legal framework makes it difficult to protect patch surroundings, where neither priority species nor their habitats occur.  相似文献   

18.
I assessed the role of low vegetation (plants ca 1 yr old and ≤50 cm tall) as a biotic facilitator or barrier in the recruitment of different growth forms and species in primary forests, secondary forests, and old‐fields (abandoned pastures) in southeastern Mexico. I removed by hand all plants (≤100 cm tall, including roots) and litter from 20, 0.25 m2 plots in each habitat. For 1 yr, I counted the number of plant species (5–50 cm tall) recruited, grouped them into different growth forms, and compared them to undisturbed control plots. Prior to manipulation, the standing density of trees and lianas was highest in primary and secondary forests. Shrubs were more abundant in secondary forests, whereas herbs, epiphytes, and hemi‐epiphytes were more abundant in old‐fields. Herbaceous plants appeared as important components of the community in all habitats. The removal of low vegetation increased total plant recruitment in all habitats. Considering each growth form, the absence of vegetation increased recruitment in primary forests for herbs, in secondary forests for epiphytes and hemi‐epiphytes, in old‐fields for trees, and for lianas in primary forests and old‐fields. In vegetation removal plots, recruitment of species was greater in pastures, lower in secondary forest, and similar in primary forest with respect to control plots. Depending on habitat type, species, and growth form, the presence of low vegetation may act as a recruitment barrier or facilitator for different species, affecting plant community structure, diversity, and composition in different habitats.  相似文献   

19.
Biodiversity in the floodplain of Saône: a global approach   总被引:3,自引:0,他引:3  
Biodiversity of European floodplains is seriously threatened mainly due to (1) modifications of river courses such as channelisation or embankments, and (2) changes in traditional agricultural practices (i.e. usually pastures), into intensive production using drainage and fertilisation. A upstream-downstream survey of the Saône floodplain (France) has been done to identify the contribution of habitats to the floodplain biodiversity. Selected taxa were aquatic and terrestrial vegetation, Odonata, Coleoptera, Amphibians, and birds. The taxa were sampled in different habitat types that were: forests, grasslands and aquatic habitats. Tributary confluences with the river and cut-off channels contributed greatly to the floodplain diversity according to their invertebrates and aquatic vegetation communities. The abundance of rare species (benefitting of a national or regional protection status) was the highest in hygrophilous grasslands. Moreover, we demonstrated that diversity of breeding bird communities was correlated with the size of these habitats. We demonstrated also that alluvial forests contributed to maintain some particular species as Middle-spotted Woodpecker (Dendrocopus medius), while new plantations were colonized by openland bird communities sensible to the edge effect. Grassland fragmentation for agriculture appeared to be a major cause in biodiversity loss. Any alteration of the floodplain dynamics must be avoided to preserve the present diversity of riverine wetlands.  相似文献   

20.
Changes in land use strongly influence habitat attributes (e.g., herbaceous ground cover and tree richness) and can consequently affect ecological functions. Most studies have focused on the response of these ecological functions to land‐use changes within only a single vegetation type. These studies have often focused solely on agricultural conversion of forests, making it nearly impossible to draw general conclusions across other vegetation types or with other land‐use changes (e.g., afforestation). We examined the consequences of agricultural conversion for seed removal by ants in native grassland, savanna, and savanna‐forest habitats that had been transformed to planted pastures (Brachiaria decumbens) and tree plantations (Eucalyptus spp.) and explored if changes in seed removal were correlated with differences in habitat attributes between habitat types. We found that land‐use changes affected seed removal across the tree cover gradient and that the magnitude of impact was influenced by similarity in habitat attributes between native and converted habitats, being greater where there was afforestation (Eucalyptus spp in grassland and savanna). Herbaceous ground cover, soil hardness, and tree richness were the most important habitat attributes that correlated with differences in seed removal. Our results reveal that the magnitude of impact of land‐use changes on seed removal varies depending on native vegetation type and is associated with the type of habitat attribute change. Our findings have implications for biodiversity in tropical grassy systems: afforestation can have a greater detrimental impact on ecological function than tree loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号