首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary In previous work on rat striated muscle cells a sliver-reducing component was found selectively localized at the terminal cistern/transverse tubule system (Tandler and Pellegrino de Iraldi 1989). To further investigate that problem we performed the Hg–Ag argentaffin reaction on a sarcoplasmic reticulum fraction from rat skeletal muscle. Circular profiles corresponding to vesicular structures were found outlined by silver grains. The number of silver stained vesicles were less than the total number vesicles stained by conventional procedures. The correlation between argentaffinities in the intact muscle fiber and their subcellular organelles indicated that the Hg–Ag reactive vesicles must be those derived from the terminal cisternae of the sarcoplasmic reticulum. The silver-reducing constituent aggregates in the presence of 1 mM CaCl2 or 0.5 M K cacodylate. The state of aggregation induced by Ca2+ was not affected by incubation with 0.5% Triton X-100 or by 2 mM EDTA, thus suggesting a localization at or near the membrane of the terminal cistern vesicle facing the junctional gap. In Laemmli SDS-acrylamide gels the Hg–Ag reaction stained all proteins in a manner similar to Coomasie blue. It is suggested that the selective histochemical staining is the result of differential reactivities due to steric requirements of the chemical reaction.  相似文献   

2.
This study reports the presence of a silver-reducing constituent in rat striated muscle fiber located selectively at the level of the terminal cistern/transverse tubule system. It is related to the T tubule network at or near sites that participate in junctions with terminal cisternae, i.e., at both sides of the T tubule in skeletal muscle (triad) and, predominantly, at one side in the ventricle (dyad). Little reactivity is present in the auricle due to the scarcity of those membrane systems. The longitudinal sarcoplasmic reticulum, the sarcolemma, mitochondria and myofibrils are not outlined by the reaction product. Extraction of low molecular weight substances, nucleic acids and lipids did not suppress the chemical reaction. A new argentaffin (Hg--Ag) technique is described. Ethanol or aldehyde fixed muscles were passed to water, postfixed 6-24 h with mercuric acetate (5% w/v in 1% acetic acid), washed with 1% acetic acid and distilled water, stained 12-24 h at 43 degrees C with ammoniacal silver nitrate (60% w/v) and washed in 10% sodium sulfite (three changes) and water. All steps were carried out in darkness. Postfixation with mercuric acetate proved to be essential for immobilizing the argentaffin component without interfering with its strong argentaffinity. The procedure also provides a simple method for tracing the pathway of transversally oriented membrane systems in skeletal and cardiac muscle cells.  相似文献   

3.
The nature of the protein components and their location in the sarcoplasmic reticulum membrane were studied using sarcoplasmic reticulum vesicles isolated from rat skeletal muscle and purified by a density gradient centrifugation system. On the basis of analysis by means of sodium dodecyl sulfate gel electrophoresis, the protein components appear to be similar if not identical with those reported by others for rabbit sarcoplasmic reticulum, and the relative amount of each component is also similar to that found with rabbit sarcoplasmic reticulum. Evidence is presented that radioiodine-labeled diazotized diiodosulfanilic acid is a nonpermeant labeling agent of the protein components of sarcoplasmic reticulum vesicles; this agent minimally disturbs the functional activities of these membranes. By means of this labeling agent and perturbing agents, it is concluded that the protein components with molecular weights greater than 120,000 and the (Ca2+ + Mg2+)-adenosine triphosphatase partially or totally reside on or at the external surface of the sarcoplasmic reticulum vesicles. In the case of the adenosine triphosphatase, highly controlled trypsin treatment cleaves the molecule into two products, a 65,000 molecular weight fragment and a 56,000 molecular weight fragment. The evidence indicates that the 65,000 molecular weight component of the (Ca2+ + Mg2+)-adenosine triphosphatase is located in a more exposed fashion on the external surface of the vesicles than the 56,000 molecular weight compoenet and that some adenosine triphosphatase molecules have a more exposed position on the external surface of the vesicle than others. The protein components designated by MacLennan (MacLennan, D. H. (1975) Can. J. Biochem. 53, 251-261) as "calsequestrin" and "high affinity Ca2+ binding protein" are shown not to be on the external surface of the rat sarcoplasmic reticulum vesicle but rather to reside either within the core of the membrane or on the inside surface of the vesicle. The results of this study are in agreement with the model for the organization of the protein components of the sarcoplasmic reticulum membrene recently proposed by MacLennan (MacLennan, D. H. (1975) Can. J. Biochem. 53, 251-261).  相似文献   

4.
The effects of caffeine on active transport of Ca2 by heavy and light fractions of rat myocardial microsomes were investigated with the use of a Ca2+-selective electrode and nephelometry. It was found that under the effect of caffeine (5 mM) the rate of Ca2 transport in the presence of oxalate decreased by 30 to 40%. The caffeine-induced inhibition was prevented by ruthenium and tetracaine, thus suggesting the inhibitor specificity. Since caffeine is a specific blocker of Ca2 transport to the terminal cisterns of the skeletal muscle sarcoplasmic reticulum, it is assumed that the microsomal fraction of rat myocardium contains terminal cistern fragments.  相似文献   

5.
The mercury-silver (Hg-Ag) argentaffin technique, known to stain specifically proteins in the lateral components of triads/diads in striated muscle cells, was applied to the central nervous system of adult rats. Following fixation in glutaraldehyde, axons in white and gray matter were selectively stained, but not perikarya or their proximal axon and dendrites. Neural tissues were postfixed 24 hr in 5% (w/v) mercuric acetate in 2% (v/v) acetic acid in distilled water, stained for 12-24 hr in darkness at 37-43 C with ammoniacal silver nitrate solution, freshly prepared by adding concentrated ammonia to 60% (w/v) silver nitrate solution until a small amount of silver oxide precipitate remained undissolved. Samples were then washed with freshly prepared 5% (w/v) sodium sulfite and distilled water. All steps were carried out using dark-colored glass flasks. Samples were dehydrated with ethanol and embedded in Paraplast or Poly Bed. Electron microscopy showed the silver-reducing protein inside the axons. Methylation abolished Hg-Ag axonal reactivity indicating that carboxyl groups were necessary for silver staining. Proteins with solubility properties characteristic of neurofilament proteins were involved in Hg-Ag staining. In the cerebellum the plexus of parallel fibers in the molecular layer were not stained, while basket cell axonal processes reacted intensely. The method appears to distinguish neuronal protein variants related to cytotypic differences in cytoskeletal neurofilaments.  相似文献   

6.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.  相似文献   

7.
NUCLEOSIDE PHOSPHATASE ACTIVITIES IN RAT CARDIAC MUSCLE   总被引:9,自引:9,他引:0       下载免费PDF全文
Localizations of aldehyde-resistant nucleoside phosphatase activities in frozen sections of rat cardiac muscle have been studied by electron microscopy. Activities are higher after fixation with formaldehyde than with glutaraldehyde. After incubation with adenosine triphosphate or inosine diphosphate at pH 7.2, reaction product is found in the "terminal cisternae" or "transverse sacs" of the sarcoplasmic reticulum, which, together with the "intermediary vesicles" (T system), constitute the "dyads" or "triads". Reaction product is also present at the membranes of micropinocytotic vacuoles which apparently form from the plasma membrane of capillary endothelial cells and from the sarcolemma. In certain regions of the intercalated discs, reaction product is found within the narrow spaces between sarcolemmas of adjacent cells and within micropinocytotic vacuoles that seem to form from the sarcolemma. With inosine diphosphate, reaction product is also found in other parts of the sarcoplasmic reticulum. After incubation with cytidine monophosphate at pH 5, reaction product is present in the transverse sacs of sarcoplasmic reticulum, in micropinocytotic vacuoles in capillary endothelium, and in lysosomes of muscle fibers and capillaries. The possible significance of the sarcoplasmic reticulum phosphatases is discussed in relation to the role the reticulum probably plays in moving calcium ions and thereby controlling contraction and relaxation of the muscle fiber.  相似文献   

8.
Smooth endoplasmic reticulum vesicles from rat liver display an ATP-supported Ca2+ transport which is mediated by a (Ca2+ + Mg2+)-ATPase. During the catalytic cycle the terminal phosphate from ATP is incorporated to form an acid-precipitable reaction product(118 000-Mr in SDS-gel electrophoresis) with stability characteristics of an acylphosphate. Comparative studies with sarcoplasmic reticulum vesicles from fast-twitch skeletal muscle suggest that the 118 000-Mr phosphopeptide may be identified with the phosphorylated reaction intermediate of a Ca2+ transport ATPase in endoplasmic reticulum, similar to that in sarcoplasmic reticulum of muscle.  相似文献   

9.
The sarcoplasmic reticulum and glycogen pellet derived from rabbit skeletal muscle and the sarcolemma and sarcoplasmic reticulum from pig skeletal muscle contains NAD:dependent mono ADP-ribosyltransferase activity toward the guanidine analog, P- nitrobenzylidine aminoguanidine. No or little activity could be found in the sarcolemma or sarcoplasmic reticulum derived from canine cardiac muscle. Seventy percent of activity extracted from rabbit skeletal muscle is localized in the sarcoplasmic reticulum. The enzyme has a pH optimum of 7.4, and KM of 0.5 mM and 0.35 mM for NAD and p-nitro benzylidine aminoguanidine, respectively. Inorganic phosphate, KCl, and guanidine derivatives inhibit the reaction. Incubation of the sarcoplasmic reticulum or glycogen pellet with (adenylate-32P) NAD or [adenosine-14C(U)]-labeled NAD results in the incorporation of radioactivity into proteins. A large number of proteins are labeled in the sarcoplasmic reticulum fraction. The major labeled band in the glycogen pellet corresponds to a protein of molecular weight of 83 K.  相似文献   

10.
A procedure for the fusion of isolated cardiac sarcolemmal and sarcoplasmic reticulum vesicles is described. When the mixture of vesicles was incubated in a medium containing CaCl2 and ATP, membrane fusion rather than vesicle aggregation or molecular exchange was demonstrated. This was achieved either by studying changes in vesicle density using sucrose gradients, fluorescence quenching using fluorescamine labeled sarcoplasmic reticulum, or by separation of the different vesicle sizes using gel-filtration. Although extensive fusion was observed when inside-out sarcolemmal vesicles were used, right-side-out vesicles showed no capacity to fuse with sarcoplasmic reticulum vesicles. The relationship between fusion and other aspects of cardiac sarcolemmal function was discussed.  相似文献   

11.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

12.
The action of caffeine and Mg2+ on the efficacy of Ca2+ transport by terminal cisterns and longitudinal tubules of rabbit skeletal muscle sarcoplasmic reticulum (SR) was studied and compared. Addition of 5 to 10 mM caffeine to the incubation medium or a decrease in Mg2+ concentration from 4 to 0.1 mM led to a 3-fold diminution of the Ca/ATP ratio for the terminal cistern fraction. In longitudinal tubules, that effect was far less pronounced. The effects of caffeine and decreases in Mg2+ concentration were blocked by ruthenium red, tetracaine and dimethylsulfoxide. It is assumed that the decrease in Mg2+ concentration is accompanied by activation of the caffeine site of the SR, induced by the intravesicular caffeine-like factor.  相似文献   

13.
It was found that the initial rate of passive KC1-stimulated Ca2+ influx into sarcoplasmic reticulum (SR) vesicles follows the saturation kinetics at Ca2+ concentrations of 8-10 mM. The inhibitory effect of Ca2+ channel blockers (La3+, Mn2+, Co2+, Cd2+, Mg2+) on passive Ca2+ influx into SR vesicles is competitive with respect to Ca2+. These blockers also inhibit the initial fast phase of Ca2+ efflux from Ca2+-loaded SR vesicles. Verapamil (0.1-0.5 mM) added to the incubation mixture has no effect on passive Ca2+ fluxes across the SR vesicle membrane or on Ca2+ binding and ATP-dependent Ca2+ accumulation. However, preincubation of SR vesicles with verapamil (18 hours, 4 degrees C) or its introduction into the medium for SR vesicle isolation leads to the inhibition of passive Ca2+ fluxes.  相似文献   

14.
A purified preparation of sarcoplasmic reticulum from rabbit skeletal muscle has been found to consist of a heterogeneous population of vesicles. Isopycnic centrifugation was used to obtain "light" and "heavy" vesicles from the upper and lower ends of a 25 to 45% (w/w) linear sucrose gradient. Each fraction accounted for about 10 to 15% of the total vesicles. The remainder of the vesicles were of intermediate density and banded between the light and heavy fraction. Light vesicles were composed of about equal amounts of phospholipid and Ca-2+ pump protein which contained approx. 90% of the protein. Heavy vesicles contained in addition to the Ca-2+ pump protein (55-65% of the protein) two other major protein components, the Ca-2+ binding and M55 proteins which accounted for 20-25 and 5-7% of the protein of these vesicles, respectively. The sarcoplasmic reticulum subfractions had 32-P-labelled phosphoenzyme levels proportional to their Ca-2+ pump protein content and contained similar Ca-2+-stimulated ATPase activities. They were capable of accumulating Ca-2+ in the presence of ATP and of releasing the accumulated Ca-2+ when placed into a medium with a low Ca-2+ concentration. The vesicles differed significantly in that heavy vesicles had a greater number of non-specific Ca-2+ binding sites than light vesicles (approx. 220 vs 75 nmol of bound Ca-2+ per mg protein), in accordance with their high content of Ca-2+ binding protein. Electron dense material could be seen within the compartment of heavy but not light vesicles. Removal of Ca-2+ binding and M55 proteins from heavy vesicles resulted in empty membranous structures consisting mainly of Ca-2+ pump protein and phospholipid. Electron micrographs of sections of muscle showed dense material in terminal cisternae but not in longitudinal sections of sarcoplasmic reticulum. These experiments are consistent with the interpretation that (1) the electron dense material inside heavy vesicles may be referable to Ca-2+ binding and/or M55 proteins, and that (2) light and heavy vesicles may be derived from the longitudinal sections and terminal cisternae of sarcoplasmic reticulum, respectively.  相似文献   

15.
In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist) and Mg2+ (endogenous inhibitor) on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 microM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 microM [Ca2+]. In 10 microM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] < or = 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 microM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed.  相似文献   

16.
Heavy metal-induced Ca2+ release from sarcoplasmic reticulum   总被引:1,自引:0,他引:1  
Two distinct forms of Ca2+ release from isolated sarcoplasmic reticulum vesicles in response to additions of heavy metals (silver and mercurials) are described. One form of heavy metal-induced Ca2+ release involves the ruthenium red-sensitive Ca2+ release channel localized in terminal cisternae. The other form of heavy metal-induced Ca2+ release appears to involve all portions of the sarcoplasmic reticulum and is insensitive to ruthenium red. This latter form of Ca2+ release occurs over a similar range of heavy metal concentrations as inhibition of the sarcoplasmic reticulum Ca2+ pump but does not appear to be a result solely of such pump inhibition. Both forms of Ca2+ release are inhibited by glutathione, an endogenous constituent of muscle fibers, and by dithiothreitol, agents which prevent sulfhydryl oxidation. To assess the role of any sulfhydryl oxidation in sarcoplasmic reticulum Ca2+ release physiologically, dithiothreitol and glutathione were introduced inside muscle fibers and effects on excitation-contraction coupling examined. The results strongly suggest that sulfhydryl oxidation plays no essential role in skeletal muscle excitation-contraction coupling.  相似文献   

17.
Sarcolemmal membrane vesicle preparations from white and red muscles of rat were found to contain a carbonic anhydrase which was indistinguishable from carbonic anhydrase IV from rat lung. This isozyme appears to account for all of the carbonic anhydrase activity in the sarcolemmal vesicle preparations. Digestion of 39-kDa CA IV with endoglycosidase F reduced the Mr to 36 kDa, suggesting that it contains one N-linked oligosaccharide. Treatment of sarcolemmal vesicles with phosphatidylinositol-specific phospholipase C released all of the activity, indicating that the enzyme is anchored to membranes by a phosphatidylinositol-glycan linkage. White muscle sarcoplasmic reticulum vesicles also contain a small amount of 39-kDa CA IV-type enzyme. A 52-kDa polypeptide in sarcoplasmic reticulum membranes cross-reacts with anti-human CA II and anti-rat CA II antisera, but does not bind to the sulfonamide affinity column. This cross-reacting polypeptide has no detectable CA activity.  相似文献   

18.
Subfractionation of sarcoplasmic reticulum from fast-twitch and slow-twitch rabbit skeletal muscles was performed on a sucrose density gradient. Vesicle fractions were characterized by: measurement of (Ca2+,Mg2+)-dependent (extra) ATPase, Mg2+-dependent (basal) ATPase, Ca2+ uptake characteristics, polypeptide patterns in sodium dodecylsulphate polyacrylamide gel electrophoreses, phosphoprotein formation and electronmicroscopy of negatively stained samples. In fast-twitch muscle, low and high density vesicles were separated. The latter showed high activity of (Ca2+,Mg2+)-dependent ATPase, negligible activity of Mg2+-dependent ATPase, high initial rate and high capacity of Ca2+ uptake, high amount of phosphorylated 115000-Mr polypeptide, and appeared morphologically as thin-walled vesicles covered with particles of 4 nm in diameter. Low density vesicles had little (Ca2+,Mg2+)-dependent ATPase but high Mg2+-dependent ATPase. Although the initial rate of Ca2+ uptake was markedly lower, the total capacity of uptake was comparable with that of high density vesicles. Phosphorylated 115000-Mr polypeptide was detectable at low concentrations. Instead, 57000 and 47000-Mr polypeptides were characterized as forming stable phosphoproteins in the presence of ATP and Mg2+. Negatively stained, these vesicles appeared to have smooth surfaces. It is suggested that low density vesicles represent a Ca2+ sequestering system different from that of high density vesicles and that Mg2+-dependent (basal) ATPase as well as the 57000 and 47000-Mr polypeptides are part of the Ca2+ transport system within the low density vesicles. According to the results from slow-twitch muscle, Ca2+ sequestration by the sarcoplasmic reticulum functions in this muscle type only through the low density vesicles.  相似文献   

19.
Using a Ca2+-selective electrode and the chlorotetracycline fluorescence technique, the effects of heparin on Ca2+ transport in the sarcoplasmic reticulum (SR) of skeletal muscles in the absence of oxalate were investigated. It was shown that heparin (0.5-10 micrograms/ml) causes a rapid release of 40-50 nmol Ca2+/mg protein from the terminal cistern SR vesicles bound to 130-150 nmol/mg protein of Ca2+ in the presence of ATP. However, heparin has practically no effect on the longitudinal cistern fraction of SR. The effects of heparin can be prevented by ruthenium red. No influence of heparin is observed in the case of the Ca2+-induced release of Ca2+ from the terminal cisterns. When the Ca2+ release is induced by heparin, no Ca2+-induced release of Ca2+ takes place.  相似文献   

20.
A subpopulation of canine cardiac sarcoplasmic reticulum vesicles has been found to contain a "Ca2+ release channel" which mediates the release of intravesicular Ca2+ stores with rates sufficiently rapid to contribute to excitation-contraction coupling in cardiac muscle. 45Ca2+ release behavior of passively and actively loaded vesicles was determined by Millipore filtration and with the use of a rapid quench apparatus using the two Ca2+ channel inhibitors, Mg2+ and ruthenium red. At pH 7.0 and 5-20 microM external Ca2+, cardiac vesicles released half of their 45Ca2+ stores within 20 ms. Ca2+-induced Ca2+ release was inhibited by raising and lowering external Ca2+ concentration, by the addition of Mg2+, and by decreasing the pH. Calmodulin reduced the Ca2+-induced Ca2+ release rate 3-6-fold in a reaction that did not appear to involve a calmodulin-dependent protein kinase. Under various experimental conditions, ATP or the nonhydrolyzable ATP analog, adenosine 5'-(beta, gamma-methylene)triphosphate (AMP-PCP), and caffeine stimulated 45Ca2+ release 2-500-fold. Maximal release rates (t1/2 = 10 ms) were observed in media containing 10 microM Ca2+ and 5 mM AMP-PCP or 10 mM caffeine. An increased external Ca2+ concentration (greater than or equal to 1 mM) was required to optimize the 45Ca2+ efflux rate in the presence of 8 mM Mg2+ and 5 mM AMP-PCP. These results suggest that cardiac sarcoplasmic reticulum contains a ligand-gated Ca2+ channel which is activated by Ca2+, adenine nucleotide, and caffeine, and inhibited by Mg2+, H+, and calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号