首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
核小体是真核生物染色质的基本单位,通过对组蛋白核心的N-端的乙酰化、甲基化、磷酸化、遍在蛋白化的修饰作用而影响细胞的功能。组蛋白乙酰化酶(histone acetylase HAT)及组蛋白去乙酰化酶(Histone Deacetylases HDAC)之间的动态平衡控制着染色质的结构和基因表达。当组蛋白去乙酰化水平增加,乙酰化水平相对降低,即会导致正常的细胞周期与代谢行为的改变而诱发肿瘤,及神经退行性变。组蛋白去乙酰化酶抑制剂(Histone Deacetylases-inhibitor HDACi)目前是国内外研究的热点。其中,曲古霉素A(Trichostatin A TSA),是最早发现的天然组蛋白去乙酰化酶抑制剂;伏立诺他(Suberoylanilide Hydroxamic Acid SAHA)已经美国FDA批准用于治疗皮肤T细胞淋巴瘤。本文就HDACi分类及其功能出发综述HDACi的作用机制及研究进展。  相似文献   

2.
3.
组蛋白去乙酰化酶抑制剂(HDACi)是一类新的化疗药物,能够有效抑制组蛋白去乙酰化酶的活性,促进组蛋白及非组蛋白的乙酰化修饰,在转录和翻译后修饰水平调控肿瘤靶蛋白及凋亡相关蛋白的表达和降解,活化凋亡信号通路,诱导肿瘤细胞凋亡。HDACi抑制抗氧化蛋白的表达,提高细胞内活性氧的水平,引起细胞的氧化损伤。因此,氧化损伤诱导的细胞凋亡也是HDACi杀伤肿瘤细胞的重要机制。HDACi诱导细胞凋亡机制的发现将进一步促进HDACi在临床治疗中的应用。  相似文献   

4.
We reported previously that an N-acylthiourea derivative (TM-2-51) serves as a potent and isozyme-selective activator for human histone deacetylase 8 (HDAC8). To probe the molecular mechanism of the enzyme activation, we performed a detailed account of the steady-state kinetics, thermodynamics, molecular modeling, and cell biology studies. The steady-state kinetic data revealed that TM-2-51 binds to HDAC8 at two sites in a positive cooperative manner. Isothermal titration calorimetric and molecular modeling data conformed to the two-site binding model of the enzyme-activator complex. We evaluated the efficacy of TM-2-51 on SH-SY5Y and BE(2)-C neuroblastoma cells, wherein the HDAC8 expression has been correlated with cellular malignancy. Whereas TM-2-51 selectively induced cell growth inhibition and apoptosis in SH-SY5Y cells, it showed no such effects in BE(2)-C cells, and this discriminatory feature appears to be encoded in the p53 genotype of the above cells. Our mechanistic and cellular studies on HDAC8 activation have the potential to provide insight into the development of novel anticancer drugs.  相似文献   

5.
The impact of histone deacetylases (HDACs) in the control of gonadotropin releasing hormone (GnRH) neuronal development is unknown. We identified an increase in many HDACs in GT1-7 (differentiated) compared with NLT (undifferentiated) GnRH neuronal cell lines. Increased HDAC9 mRNA and protein and specific deacetylase activity in GT1-7 cells suggested a functional role. Introduction of HDAC9 in NLT cells protected from serum withdrawal induced apoptosis and impaired basal neuronal cell movement. Conversely, silencing of endogenous HDAC9 in GT1-7 cells increased apoptosis and cell movement. Comparison of WT and mutant HDAC9 constructs demonstrated that the HDAC9 pro-survival effects required combined cytoplasmic and nuclear localization, whereas the effects on cell movement required a cytoplasmic site of action. Co-immunoprecipitation demonstrated a novel interaction of HDAC9 selectively with the Class IIb HDAC6. HDAC6 was also up-regulated at the mRNA and protein levels, and HDAC6 catalytic activity was significantly increased in GT1-7 compared with NLT cells. HDAC9 interacted with HDAC6 through its second catalytic domain. Silencing of HDAC6, HDAC9, or both, in GT1-7 cells augmented apoptosis compared with controls. HDAC6 and -9 had additive effects to promote cell survival via modulating the BAX/BCL2 pathway. Silencing of HDAC6 resulted in an activation of movement of GT1-7 cells with induction in acetylation of α-tubulin. Inhibition of HDAC6 and HDAC9 together resulted in an additive effect to increase cell movement but did not alter the acetylation of αtubulin. Together, these studies identify a novel interaction of Class IIa HDAC9 with Class IIb HDAC6 to modulate cell movement and survival in GnRH neurons.  相似文献   

6.
Histone deacetylase 1 (HDAC1) and HDAC2 are components of corepressor complexes that are involved in chromatin remodeling and regulation of gene expression by regulating dynamic protein acetylation. HDAC1 and -2 form homo- and heterodimers, and their activity is dependent upon dimer formation. Phosphorylation of HDAC1 and/or HDAC2 in interphase cells is required for the formation of HDAC corepressor complexes. In this study, we show that during mitosis, HDAC2 and, to a lesser extent, HDAC1 phosphorylation levels dramatically increase. When HDAC1 and -2 are displaced from the chromosome during metaphase, they dissociate from each other, but each enzyme remains in association with components of the HDAC corepressor complexes Sin3, NuRD, and CoREST as homodimers. Enzyme inhibition studies and mutational analyses demonstrated that protein kinase CK2-catalyzed phosphorylation of HDAC1 and -2 is crucial for the dissociation of these two enzymes. These results suggest that corepressor complexes, including HDAC1 or HDAC2 homodimers, might target different cellular proteins during mitosis.  相似文献   

7.
8.
Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides ( 4 a – i , 7 a – g ) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI−H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a – i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a – g in all biological assays. Compounds 7 e – f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 μM and 1.794±0.159 μM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.  相似文献   

9.
组蛋白去乙酰化酶 6(HDAC6)是组蛋白去乙酰化酶(HDACs)IIb 家族中的一员,主要催化 α- 微管蛋白、热休克蛋白 Hsp90、皮质肌动蛋白及过氧化物还原酶等的去乙酰化。HDAC6 与肿瘤、神经退行性疾病、炎症、自身免疫应答、细菌感染及心脏病等 诸多疾病的病理生理进程密切相关,是一个极具应用前景的药物靶标。选择性 HDAC6 抑制剂是目前该领域的研究热点,有望克服广谱 HDAC 抑制剂存在的选择性差、副作用大等缺点。综述 HDAC6 的结构、生化功能、与疾病的关系及其选择性抑制剂的研究进展,为开发 新型选择性 HDAC6 抑制剂提供参考。  相似文献   

10.
组蛋白乙酰转移酶和组蛋白脱乙酰酶分别催化组蛋白的乙酰化和脱乙酰基反应,调节组蛋白的乙酰化水平,从而调控基因表达。这些过程与恶性肿瘤的发生具有密切的关系。组蛋白脱乙酰酶抑制剂通过增加细胞内组蛋白的乙酰化程度,调节多种基因的表达水平,抑制肿瘤细胞的增殖、诱导细胞分化和凋亡。该文从抑制细胞增殖、诱导细胞分化、诱导细胞凋亡和抗血管形成等4个方面介绍组蛋白脱乙酰酶抑制剂的抗癌机制,并简要介绍它们的分类。  相似文献   

11.
12.
Fluorescent tagging of bioactive molecules is a powerful tool to study cellular uptake kinetics and is considered as an attractive alternative to radioligands. In this study, we developed fluorescent histone deacetylase (HDAC) inhibitors and investigated their biological activity and cellular uptake kinetics. Our approach was to introduce a dansyl group as a fluorophore in the solvent-exposed cap region of the HDAC inhibitor pharmacophore model. Three novel fluorescent HDAC inhibitors were synthesized utilizing efficient submonomer protocols followed by the introduction of a hydroxamic acid or 2-aminoanilide moiety as zinc-binding group. All compounds were tested for their inhibition of selected HDAC isoforms, and docking studies were subsequently performed to rationalize the observed selectivity profiles. All HDAC inhibitors were further screened in proliferation assays in the esophageal adenocarcinoma cell lines OE33 and OE19. Compound 2, 6-((N-(2-(benzylamino)-2-oxoethyl)-5-(dimethylamino)naphthalene)-1-sulfonamido)-N-hydroxyhexanamide, displayed the highest HDAC inhibitory capacity as well as the strongest anti-proliferative activity. Fluorescence microscopy studies revealed that compound 2 showed the fastest uptake kinetic and reached the highest absolute fluorescence intensity of all compounds. Hence, the rapid and increased cellular uptake of 2 might contribute to its potent anti-proliferative properties.  相似文献   

13.
MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSβ complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic instability that can lead to cancer. MSH2 is acetylated at its C terminus, and histone deacetylase (HDAC6) deacetylates MSH2. However, whether other regions of MSH2 can be acetylated and whether other histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in MSH2 deacetylation/acetylation is unknown. Here, we report that MSH2 can be acetylated at Lys-73 near the N terminus. Lys-73 is highly conserved across many species. Although several Class I and II HDACs interact with MSH2, HDAC10 is the major enzyme that deacetylates MSH2 at Lys-73. Histone acetyltransferase HBO1 might acetylate this residue. HDAC10 overexpression in HeLa cells stimulates cellular DNA MMR activity, whereas HDAC10 knockdown decreases DNA MMR activity. Thus, our study identifies an HDAC10-mediated regulatory mechanism controlling the DNA mismatch repair function of MSH2.  相似文献   

14.
Lithium is an effective mood stabilizer that has been clinically used to treat bipolar disorder for several decades. Recent studies have suggested that lithium possesses robust neuroprotective and anti-tumor properties. Thus far, a large number of lithium targets have been discovered. Here, we report for the first time that HDAC1 is a target of lithium. Lithium significantly down-regulated HDAC1 at the translational level by targeting HDAC1 mRNA. We also showed that depletion of HDAC1 is essential for the neuroprotective effects of lithium and for the lithium-mediated degradation of mutant huntingtin through the autophagic pathway. Our studies explain the multiple functions of lithium and reveal a novel mechanism for the function of lithium in neurodegeneration.  相似文献   

15.
16.
17.
Acyl derivatives of 4-(aminomethyl)-N-hydroxybenzamide are potent sub-type selective HDAC6 inhibitors. Constrained heterocyclic analogs based on 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine show further enhanced HDAC6 selectivity and inhibitory activity in cells. Homology models suggest that the heterocyclic spacer can more effectively access the wider catalytic channel of HDAC6 compared to other HDAC sub-types.  相似文献   

18.
DNA双链断裂(double strand breaks, DSBs)对细胞生存是致命的.细胞内非同源末端连接(NHEJ)、重组修复(HDR)、单链退火修复(SSA)和微同源序列末端连接(MMEJ)等通路可竞争性修复DNA双链断裂损伤.在肿瘤细胞DNA中制造难以修复的基因损伤,诱导肿瘤细胞周期中止、坏死和凋亡是临床放、化疗的主要策略.组蛋白去乙酰化酶(histone deacetylase)作为抗肿瘤治疗的新靶标,其抑制剂(histonedeacetylase inhibitors, HDACi)可显著降低肿瘤细胞DSBs修复能力,增强肿瘤细胞的放、化疗敏感性.研究显示,HDACi抑制了肿瘤细胞中具有正确修复倾向的HDR和经典NHEJ通路,具有错误修复倾向的SSA和MMEJ路径也可能牵涉其中.目前,HDACi作用于DSBs修复通路的分子机制已取得较大进展,但仍有许多问题有待阐明.  相似文献   

19.
急性髓系白血病(AML)是造血干/祖细胞恶性克隆性疾病,以骨髓、血液和其他组织中髓系起源的异常原始细胞增殖为特征。“3+7”诱导方案(蒽环类药物联合阿糖胞苷)一直是治疗AML的基石,但仍有部分AML患者无法耐受强化疗或完全缓解后复发,目前AML的总体疗效仍不乐观。因此,寻找新药物以提高AML患者疗效具有重要的临床意义。越来越多的研究证明,表观遗传对AML的发生、发展起重要作用。组蛋白去乙酰化酶抑制剂(HDACi)是表观遗传修饰的分子靶向药物,可抑制组蛋白去乙酰化酶(HDAC)的活性,上调组蛋白赖氨酸的乙酰化水平,目前已应用于AML临床研究中,在联合治疗中显现出良好的耐受性与治疗效果。本综述介绍了HDAC和HDACi的分类依据以及在临床上的应用,阐述了伏立诺他、贝利司他、帕比司他、戊丙酸、恩替诺特、西达本胺等6种HDACi在AML中的临床前研究结果和临床应用研究进展,讨论了HDACi与其他抗癌药物联用在AML中的作用机制,并对HDACi今后的发展提出了建议,期望为临床治疗AML提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号