首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophil-activating peptide 1/interleukin 8 (NAP-1/IL-8), neutrophil-activating peptide 2 (NAP-2), and gro/melanoma growth-stimulatory activity (gro/MGSA) are potent inflammatory cytokines with homologous structure and similar neutrophil-activating properties. Receptors on human neutrophils that interact with these peptides were studied. Analysis of 125I-NAP-1/IL-8 binding at 0-4 degrees C revealed 64,500 +/- 14,000 receptors/cell with an apparent Kd of 0.18 +/- 0.07 nM (mean +/- S.D. of six independent experiments). Unlabeled NAP-1/IL-8, NAP-2, and gro/MGSA competed with 125I-NAP-1/IL-8 for binding to human neutrophils. Competition with increasing concentrations of unlabeled NAP-2 and gro/MGSA resolved two classes of NAP-1/IL-8 binding sites: about 70% of them bound NAP-2 and gro/MGSA with high affinity (Kd: 0.34 +/- 0.2 and 0.14 +/- 0.02), while 30% were of low affinity (Kd: 100 +/- 20 and 130 +/- 10 nM). Different binding sites, however, were not apparent upon competition with unlabeled NAP-1/IL-8, suggesting that both classes of receptors have similar affinities for NAP-1/IL-8. The existence of two receptors was also suggested by ligand cross-linking and cross-desensitization experiments. Two neutrophil membrane proteins with apparent Mr of 66,000-74,000 and 42,000-46,000 became cross-linked to 125I-NAP-1/IL-8, and the labeling was decreased when excess NAP-1/IL-8, NAP-2, or gro/MGSA was present. Stimulation of neutrophils with NAP-1/IL-8 resulted in desensitization toward a subsequent challenge with NAP-2 or gro/MGSA as shown by the rise in cytosolic free calcium. By contrast, following primary stimulation with NAP-2 or gro/MGSA, responses to NAP-1/IL-8 were only moderately attenuated, supporting the existence of NAP-1/IL-8 receptors which bind NAP-2 or gro/MGSA with low affinity. In conclusion, our results demonstrate that NAP-2 and gro/MGSA act upon human neutrophils by directly interacting with two classes of receptors for NAP-1/IL-8.  相似文献   

2.
Characterization of two high affinity human interleukin-8 receptors.   总被引:25,自引:0,他引:25  
Interleukin 8 (IL-8) and melanocyte growth-stimulatory activity/gro (MGSA) are structurally related proinflammatory cytokines that are chemoattractants and activators of neutrophils. Recently, cDNA clones encoding a high affinity IL-8 receptor (IL-8R-A) and a "low affinity" IL-8 receptor (IL-8R-B) have been isolated from human cDNA libraries. These two receptors have 77% amino acid identity and are members of the G protein-coupled superfamily of receptors with seven transmembrane domains. We have expressed these two receptors in mammalian cells and find that in this system both receptors bind IL-8 with high affinity (Kd approximately 2 nM). The receptor affinities differ for MGSA, however. IL-8R-A binds MGSA with low affinity (Kd approximately 450 nM); IL-8R-B binds MGSA with high affinity (Kd approximately 2 nM). The transfected cells respond to ligand binding with a transient increase in the intracellular Ca2+ concentration. A Ca2+ response is found for IL-8R-A following the binding of IL-8; no response is found for MGSA. A Ca2+ response for IL-8R-B follows the binding of both ligands. Blot hybridization with oligonucleotide probes specific for the two receptors shows that mRNA for both receptors is present in human neutrophils. Analysis of IL-8 and MGSA binding data on neutrophils as well as Ca2+ response and desensitization data shows that the presence of these two IL-8 receptors on the cell surface can account for the profile of these two ligands on neutrophils.  相似文献   

3.
Glu-Leu-Arg ("ELR") CXC chemokines interleukin-8 (IL-8) and melanoma growth stimulatory activity (MGSA) recruit neutrophils by binding and activating two receptors, CXCR1 and CXCR2. CXCR1 is specific, binding only IL-8 with nanomolar affinity, whereas CXCR2 is promiscuous, binding all ELRCXC chemokines with high affinity. Receptor signaling consists of two events: interactions between the ligand N-terminal loop (N-loop) and receptor N-terminal domain (N-domain) residues (site I), and between the ligand N-terminal ELR and the receptor juxtamembrane domain (J-domain) residues (site II). It is not known how these interactions mediate ligand affinity and selectivity, and whether binding at one site influences binding and function at the other. Sequence analysis and structure-function studies have suggested that the receptor N-domain plays an important role in ligand selectivity. Here, we report ligand-binding properties and structural characteristics of the CXCR1 N-domain in solution and in detergent micelles that mimic the native membrane environment. We find that IL-8 binds the N-domain with significantly higher affinity in micelles than in solution (approximately 1 microM versus approximately 20 microM) and that MGSA does not bind the N-domain in solution but does in micelles with appreciable affinity (approximately 3 microM). We find that the N-domain is structured in micelles and that the entire N-domain interacts with the micelle in an extended fashion. We conclude that the micellar environment constrains the N-domain, and this conformational restraint influences its ligand-binding properties. Most importantly, our data suggest that for both ligands, site I interaction provides similar affinity and that differential coupling between site I and II interactions is responsible for the observed differences in affinity.  相似文献   

4.
Murine macrophage inflammatory protein-2 (MIP-2), a member of the alpha-chemokine family, is one of several proteins secreted by cells in response to lipopolysaccharide. Many of the alpha-chemokines, such as interleukin-8, gro-alpha/MGSA, and neutrophil activating peptide-2 (NAP-2), are associated with neutrophil activation and chemotaxis. We describe the expression, purification, and characterization of murine MIP-2 from Pichia pastoris. Circular dichroism spectroscopy reveals that MIP-2 exhibits a highly ordered secondary structure consistent with the alpha/beta structures of other chemokines. Recombinant MIP-2 is chemotactic for human and murine neutrophils and up-regulates cell surface expression of Mac-1. MIP-2 binds to human and murine neutrophils with dissociation constants of 6.4 nM and 2.9 nM, respectively. We further characterize the binding of MIP-2 to the human types A and B IL-8 receptors and the murine homologue of the IL-8 receptor. MIP-2 displays low-affinity binding to the type A IL-8 receptor (Kd > 120 nM) and high-affinity binding to the type B IL-8 receptor (Kd 5.7 nM) and the murine receptor (Kd 6.8 nM). The three-dimensional structure of IL-8 and sequence analysis of six chemokines (IL-8, gro-alpha, NAP-2, ENA-78, KC, and MIP-2) that display high-affinity binding to the IL-8 type B receptor are used to identify an extended N-terminal surface that interacts with this receptor. Two mutants of MIP-2 establish that this region is also involved in binding and activating the murine homologue of the IL-8 receptor. Differences in the sequence between IL-8 and related chemokines identify a unique hydrophobic/aromatic region surrounded by charged residues that is likely to impart specificity to IL-8 for binding to the type A receptor.  相似文献   

5.
The human melanoma growth-stimulatory activities (MGSA alpha, beta, gamma/GRO) are products of immediate early genes coding for cytokines that exhibit sequence similarity to platelet factor-4 and beta-thromboglobulin. MGSA/GRO alpha has been demonstrated to partially complete for binding to the approximately 58-kDa neutrophil receptor for another beta-thromboglobulin-related chemotactic protein, IL-8. We demonstrate that when [125I]MGSA/GRO alpha was cross-linked to receptors/binding proteins from human placenta, there were two major [125I]MGSA cross-linked bands of approximately 64,000 and approximately 84,000 Mr. Because [125I]MGSA exists primarily in monomer and dimer forms at the concentrations used here, it is not clear whether the receptor/binding proteins represented by the cross-linked bands are approximately 50,000 and approximately 70,000 or approximately 58,000 and approximately 78,000 Mr. Ligand binding to the receptor proteins is associated with enhanced tyrosine phosphorylation of a number of substrates, including proteins in the same Mr range as the MGSA/GRO receptor/binding proteins.  相似文献   

6.
IL-8 is a proinflammatory cytokine that functions as a chemoattractant for neutrophils. Recently, cDNA clones encoding the human neutrophil IL-8R were isolated by an expression cloning strategy. The amino acid sequence of the human IL-8R was sufficiently similar to a published sequence for an isoform of the rabbit FMLP receptor that we considered the possibility that the rabbit sequence might bind IL-8 as well. In order to establish its ligand specificity, we have isolated and characterized cDNA clones encoding the rabbit receptor. These cDNA clones, when expressed in mammalian cells, confer high affinity IL-8 binding (Kd = 3.6 nM), lack detectable binding of FMLP, and produce a transient increase in the intracellular Ca2+ concentration in response to IL-8 but not to FMLP. These data demonstrate that the reported rabbit FMLP receptor is the rabbit IL-8R, not an isoform of the FMLP receptor. In addition, the amino acid sequence of the rabbit IL-8R encoded by these cDNA clones differs at 23 amino acids (of 355) from that previously published.  相似文献   

7.
In studies aimed at developing a high affinity IL-8 antagonist, our first objective was to generate a high-affinity IL-8 analogue. We targeted amino acids within the receptor-binding domain and found that IL-8((3-73))K11R induced significantly more neutrophil beta-glucuronidase release than either IL-8 or the alternate analogues and, in chemotaxis assays, induced 2-3-fold greater neutrophil responses than IL-8. Furthermore, in competitive radio- or biotinylated-ligand binding assays, IL-8((3-73))K11R was more effective than IL-8, IL-8((3-73)), or its T12S, H13F, and K11R/T12S/H13F analogues in blocking IL-8 binding to neutrophils; 1.8 pmol IL-8((3-73))K11R inhibited by 50% the binding of approximately 20 pmol (125)I-IL-8 to neutrophils. Both IL-8 (a CXCR1/CXCR2 ligand) and the CXCR2-specific ligand GROalpha differentially inhibited binding of (125)I-IL-8((3-73))K11R to neutrophils, albeit weakly, suggesting that IL-8((3-73))K11R is a high affinity ligand for both the CXCR1 and CXCR2. Thus IL-8((3-73))K11R is an excellent candidate for further studies aimed at generating a high affinity IL-8 antagonist.  相似文献   

8.
Interleukin-8 (IL-8) is one of the most potent chemotactic agents for neutrophils and has been implicated as a major mediator of inflammation. The IL-8 receptor is expressed exclusively in neutrophils and belongs to the family of G-protein-coupled receptors. In a recent paper we reported the characterization of a cDNA clone, F3R, isolated from a neutrophil cDNA library and showed that it encodes a G-protein-coupled receptor which is exclusively expressed in neutrophils. We also suggested, based on expression studies in Xenopus oocytes, that the F3R protein product is an isoform of the (fMLP) receptor (Thomas, K. M., Pyun, H. Y., and Navarro, J. (1990) J. Biol. Chem. 265, 20061-20064). In this work, the F3R receptor cDNA is expressed in monkey kidney cells (COS-7) and is shown to encode the IL-8 receptor. F3R cDNA does not encode for a fMLP receptor isoform. We show conclusively that the F3R-transfected COS-7 cells express the IL-8 receptor at a density equivalent to that observed in neutrophils. The pharmacological profile of the F3R-transfected cells is the same as that of neutrophils. The apparent Kd values for binding of 125I-IL-8 to neutrophils and F3R-transfected COS-7 cell membranes were 1.2 and 1.4 nM, respectively. Antipeptide antibodies against a partial sequence of the F3R protein product specifically immunoprecipitate the IL-8 receptor from transfected cells as well as neutrophils. The molecular characterization of the IL-8 receptor should provide the basis for further studies on the identification of the binding domain of this inflammatory receptor.  相似文献   

9.
Chemokines are small proteins (70-100 amino acids) which play an important role in recruitment and activation of leucocytes to migrate to the site of inflammation. Based on the position of the first two conserved cysteines, chemokines are classified into four subfamilies: C, CC, CXC and CX3C. To date, many members of CC and CXC have been found and studied extensively [1]. Chemokines exert effects on their target cell via chemokine receptors, which are G-protein coupled receptors containing seven transmembrane domains with an extracellular N-terminus and an intracellular C-terminus [2]. Interleukin 8 (IL-8) belongs to the CXC chemokine subfamily. It can activate and attract migratory neutrophils to an inflammation site. Two IL-8 receptors, CXCR1 and CXCR2, have been identified in mammals [3-6]; both of these receptors have high affinity for IL-8 and are expressed on the neutrophil. CXCR1 just binds IL-8; however, CXCR2 binds IL-8 and other structurally related chemokines such as growth-related oncogene (GRO) a, GRObeta, GROgamma, neutrophil-activating peptide-2 (NAP-2) and epithelial cell-derived neutrophil activating peptide-78 (ENA-78) [7, 8]. Several studies on fish chemokine receptors have been reported [9-11]. Thus far, however, IL-8 and CXCR1 and CXCR2 proteins from rainbow trout have not been reported: however, the sequence of a rainbow trout IL-8 has been noted (GenBank Accession No. AJ279069 [12]). Cloning of the IL-8 receptor is important to study the function of IL-8/CXCR1 and (CXCR2) in inflammation and signal transduction in fish. This paper reports the molecular cloning and genomic structure of an IL-8 receptor-like gene from four homozygous clones of rainbow trout: Oregon State University (OSU), Hot Creek (HC), Arlee (AR) and Swanson (SW).  相似文献   

10.
Tachykinins are a family of bioactive peptides that interact with three subtypes of receptors: NK1, NK2 and NK3. Substance P has greater affinity for NK1, and neurokinin A (NKA) for NK2 receptor subtype. Although only NK1 receptor has been characterized in the anterior pituitary gland, some evidence suggests the existence of NK2 receptors in this gland. Therefore, we investigated the presence of NK2 receptors in the anterior pituitary gland of male rats by radioligand binding studies using labeled SR48968, a non peptidic specific antagonist. [3H]SR48968 specific binding to cultured anterior pituitary cells was time-dependent and saturable, but with a lower affinity than previously reported values for cells expressing NK2 receptors. Unlabeled NKA inhibited only partially [(3)H]SR48968 specific binding to whole anterior pituitary cells. Since SR48968 is a non polar molecule, we performed experiments to discriminate surface from intracellular binding sites. SR48968 exhibited both surface and intracellular specific binding. Analysis of the surface-bound ligand indicated that [3H]SR48968 binds to one class of receptor with high affinity. Neurokinin A completely displaced [3H]SR48968 surface specific binding fitting to a two-site/two-state model with high and low affinity. Additionally, immunocytochemical studies showed that the NK2 receptor is expressed at least in a subset of lactotropes. These results demonstrate the presence of NK2 receptors in the anterior pituitary gland and suggest that NKA actions in this gland are mediated, at least in part, by the NK2 receptor subtype.  相似文献   

11.
J L Imler  A Miyajima    G Zurawski 《The EMBO journal》1992,11(6):2047-2053
The beta chain of the interleukin-2 (IL-2) receptor (IL-2R beta) and the interleukin-3 (IL-3) binding protein AIC2A are members of the family of cytokine receptors, which also includes the receptors for growth hormone (GHR) and prolactin. A four amino acid sequence of AIC2A has recently been shown to be critical for IL-3 binding. We analyze here the function of the analogous sequence of human IL-2R beta and identify three amino acids, Ser132, His133 and Tyr134, which play a critical role in IL-2 binding. We show that some mutant IL-2 proteins with substitutions of a critical Asp residue in the N-terminal alpha-helix bind the mutant IL-2R beta receptor with a higher affinity than the wild-type receptor. This suggests that the critical Asp34 in the ligand and the sequence Ser-His-Tyr (positions 132-134) in the receptor interact directly. On the double barrel beta-stranded structural model of cytokine receptors, the residues important for ligand binding in IL-2R beta, AIC2A and GHR map to strikingly similar locations within a barrel, with the interesting difference that it is the N-terminal barrel for GHR and the C-terminal barrel for IL-2R beta and AIC2A.  相似文献   

12.
IL-8 and its structural analogs derived from blood platelets have been proposed as stimuli of IgE-independent basophil activation. In order to clarify the mechanism of action of these peptides, we examined the effects of pure IL-8, connective tissue-activating peptide III (CTAP-III), neutrophil-activating peptide 2 (NAP-2), and platelet factor 4 (PF-4) on blood basophils with and without pretreatment by IL-3, which modulates mediator release. After pretreatment with IL-3, significant histamine release was observed with 10(-8) M and 10(-7) M IL-8 and 10(-7) M NAP-2, but not with the other peptides. At higher concentrations (10(-6) M), however, all IL-8 analogs, as well as the unrelated cationic peptides poly-D-lysine, histone VS, and lysozyme, induced histamine release to variable degrees. Binding and competition studies with [125I]IL-8 revealed specific IL-8R on basophils from a patient with chronic myelogenous leukemia and normal individuals. From 3500 to 9600 receptors with a mean Kd value of 0.15 nM were found on average per chronic myelogenous leukemia and normal basophil, respectively. NAP-2 weakly competed for IL-8 binding. IL-8 and, to a lesser extent, NAP-2 led to a transient rise of cytosolic free calcium concentration ([Ca2+]i), which was independent of a preexposure to IL-3. IL-8 prevented the [Ca2+]i rise induced by NAP-2, but did not influence [Ca2+]i responses to other agonists, e.g. C5a, C3a, or platelet-activating factor. IL-8 induced [Ca2+]i changes and histamine release in IL-3-primed basophils were pertussis toxin sensitive. CTAP-III or PF-4 did not compete for IL-8 binding, did not induce [Ca2+]i changes, and did not influence the [Ca2+]i response to IL-8 and NAP-2. This study shows that IL-8 and NAP-2 activate human basophils by a receptor-mediated mechanism similar to that operating in neutrophils. At high concentrations histamine release can also be induced by cationic peptides by a mechanism that does not involve the IL-8R, and probably depends on cationic interactions.  相似文献   

13.
Two human cDNA clones that encode different interleukin-8 (IL8) receptors have recently been isolated. The interleukin-8 receptor type 1 (IL8R1) binds IL8 only, whereas the interleukin-8 receptor type 2 (IL8R2) (previously designated IL8RA) also binds growth regulated gene (GRO), and neutrophil activating protein-2 (NAP-2) with high affinity. In the process of screening a genomic library with these cDNAs to obtain large clones for use in chromosomal localization studies, we isolated an interleukin-8 receptor pseudogene (IL8RP) that bears greatest similarity to IL8R2. Using Southern hybridization analysis of human x rodent somatic cell hybrid DNAs with cDNA probes for IL8R1 and IL8R2 and probes from the IL8RP locus, we assigned the three loci to chromosome 2; fluorescence in situ hybridization (FISH) to metaphase chromosome preparations using genomic clones from each locus refined this localization to chromosome 2, band q35, for all three. By virtue of their chromosomal location, IL8R1 and IL8R2 may be considered candidate genes for several human disorders in which the involved locus has been mapped to distal 2q or that are associated with structural abnormalities of this segment, including van der Woude syndrome and the neoplastic diseases rhabdomyosarcoma and uterine leiomyomata. In addition, because this region of chromosome 2q is homologous to proximal mouse chromosome 1 in the segment containing the Lsh-Ity-Bcg locus involved in mediating host resistance to infection with intracellular pathogens, examination for abnormalities of the murine homologues of the IL8R genes should be considered in mice affected by mutations of this locus.  相似文献   

14.
Neutrophil receptor(s) for neutrophil activating peptides 1 and 2 were studied by competition binding experiments with radiolabeled NAP-1 and NAP-2 preparations. NAP-1 bound with one affinity, NAP-2 with two quite different affinities, to common receptor(s) on neutrophils. Concentrations of NAP-2 needed to induce exocytosis of beta-glucosaminidase corresponded to the higher dissociation constant of the two binding equilibria. Thus, the binding of NAP-2 to PMN with high affinity does not activate the cells.  相似文献   

15.
Cytokines are key mediators for the regulation of hemopoiesis and the coordination of immune responses. They exert their various functions through activation of specific cell surface receptors, thereby initiating intracellular signal transduction cascades which lead to defined cellular responses. As the common signal-transducing receptor subunit of at least seven different cytokines, gp130 is an important member of the family of hemopoietic cytokine receptors which are characterized by the presence of at least one cytokine-binding module. Mutants of gp130 that either lack the Ig-like domain D1 (DeltaD1) or contain a distinct mutation (F191E) within the cytokine-binding module have been shown to be severely impaired with respect to IL-6 induced signal transduction. After cotransfection of COS-7 cells with a combination of both inactive gp130 mutants, signal transduction in response to IL-6 is restored. Whereas cells transfected with DeltaD1 do not bind IL-6/sIL-6R complexes, cells transfected with the F191E mutant bind IL-6/sIL-6R with low affinity. Combination of DeltaD1 and F191E, however, leads to high-affinity ligand binding. These data suggest that two different gp130 epitopes, one on each receptor chain, sequentially cooperate in asymmetrical binding of IL-6/IL-6R in a tetrameric signaling complex. On the basis of our data, a model for the mechanism of IL-6-induced gp130 activation is proposed.  相似文献   

16.
Studies of human neutrophil IL-8 receptors, CXCR1 and CXCR2, have shown that the two receptors are differentially regulated by ELR+-CXC chemokines, that they differ functionally and may have diverse roles in mediating the inflammatory process. To elucidate the role of CXCR1 and CXCR2 in inflammation and to delineate the basis for the divergent regulation of these receptors by IL-8 and NAP-2, we characterized the IL-8- and NAP-2-induced mechanisms regulating the expression of each receptor, focusing on receptor internalization and recycling. Using HEK 293 cell transfectants, IL-8 was shown to induce significantly higher levels of CXCR2 internalization than NAP-2. Moreover, although CXCR2 bound IL-8 and NAP-2 with similarly high affinity, IL-8 functionally competed with and displaced NAP-2, and prompted high levels of internalization, similar to those induced by IL-8 alone. In a system providing an identical cellular milieu for reliable comparisons between CXCR1 and CXCR2, we have shown that the mechanisms controlling the internalization of CXCR1 diverge from those regulating CXCR2 internalization. Whereas IL-8-induced internalization of CXCR1 was profoundly dependent on a region of the carboxyl terminus expressing six phosphorylation sites, internalization of CXCR2 was primarily regulated by a membrane proximal domain of the carboxyl terminus that does not express phosphorylation sites. Analysis of receptor re-expression on the plasma membrane indicated that at early time points following removal of free ligand and incubation of the cells at 37°C, receptor recycling accounted for recovery of CXCR1 and CXCR2 expression, whereas at later time points other processes may be involved in receptor re-expression. Phosphorylation-independent mechanisms were shown to direct both receptors to the recycling pathway. The differential control of CXCR1 vs CXCR2 internalization by IL-8 and NAP-2, as well as by phosphorylation-mediated mechanisms, suggests that a chemokine- and receptor-specific mode of regulation of internalization may contribute to the divergent activities of these receptors.  相似文献   

17.
IL-3 has numerous functions in hematopoiesis yet its receptor has not been fully characterized. We have developed two mAb, 4G8 and 2F2, that markedly inhibited IL-3-dependent proliferation whereas only marginally affecting IL-2 or IL-4-induced proliferation. On Western blots, both antibodies identified the same protein, which varied in size from 115 to 145 kDa in six cell lines tested. The 4G8/2F2 Ag was detected at moderate density, on a wide variety of cells including IL-3-dependent cell lines and T lymphocytes. Radioligand binding studies revealed that 4G8, but not 2F2, could inhibit the binding of 125I-IL-3 to the high affinity IL-3R. These data suggest that the mAb 4G8 and 2F2 recognize different epitopes on the same Ag, and suggest furthermore that the inhibition of IL-3-dependent proliferation mediated by 2F2, in particular, does not occur via inhibition of ligand binding. Neither antibody showed an enhanced level of fluorescent staining of Cos 7 cells transfected with the low affinity IL-3R cDNA. In addition, 4G8 did not inhibit IL-3 binding to L cells transfected with the cloned IL-3R or IL-4R despite the fact that 4G8 was expressed on these cells. These data suggest that the 4G8/2F2 Ag is a unique cell surface protein that can interact with the endogenous functional IL-3R.  相似文献   

18.
We have probed an epitope sequence (His18-Pro19-Lys20-Phe21) in interleukin-8 (IL-8) by site-directed mutagenesis. This work shows that single and double Ala substitutions of His18 and Phe21 in IL-8 reduced up to 77-fold the binding affinity to IL-8 receptor subtypes A (CXCR1) and B (CXCR2) and to the Duffy antigen. These Ala mutants triggered neutrophil degranulation and induced calcium responses mediated by CXCR1 and CXCR2. Single Asp or Ser substitutions, H18D, F21D, F21S, and double substitutions, H18A/F21D, H18A/F21S, and H18D/F21D, reduced up to 431-fold the binding affinity to CXCR1, CXCR2, and the Duffy antigen. Interestingly, double mutants with charged residue substitutions failed to trigger degranulation or to induce wild-type calcium responses mediated by CXCR1. Except for the H18A and F21A mutants, all other IL-8 mutants failed to induce superoxide production in neutrophils. This study demonstrates that IL-8 recognizes and activates CXCR1, CXCR2, and the Duffy antigen by distinct mechanisms.  相似文献   

19.
Molecular characterization of the interleukin-8 receptor   总被引:1,自引:0,他引:1  
Recently a rabbit cDNA (F3R) was characterized as binding and causing calcium mobilization induced by the formyl-methionine-leucine-phenylalanine peptide (fMLP). In the study reported here, cloned DNAs were isolated from rabbit genomic DNA by PCR based on the sequence of F3R. The cloned DNAs have several differences in the DNA sequence compared to the reported F3R sequence that alter the predicted protein sequence. COS-7 cells transfected with these clones in a mammalian expression vector bind human IL-8 with high affinity, but do not bind fMLP. We therefore believe that the cDNAs isolated encode the rabbit IL-8 receptor.  相似文献   

20.
Agouti-related protein (AGRP) is an endogenous antagonist of melanocortin action that functions in the hypothalamic control of feeding behavior. Although previous studies have shown that AGRP binds three of the five known subtypes of melanocortin receptor, the receptor domains participating in binding and the molecular interactions involved are presently unknown. The present studies were designed to examine the contribution of extracytoplasmic domains of the melanocortin-4 receptor (MC4R) to AGRP binding by making chimerical receptor constructs of the human melanocortin-1 receptor (MC1R; a receptor that is not inhibited by AGRP) and the human MC4R (a receptor that is potently inhibited by AGRP). Substitutions of the extracytoplasmic NH2 terminus and the first extracytoplasmic loop (exoloop) of the MC4R with homologous domains of the MC1R had no effect on AGRP (87-132) binding affinity or inhibitory activity (the ability to inhibit melanocortin-stimulated cAMP generation). In contrast, cassette substitutions of exoloops 2 and 3 of the MC4R with the homologous exoloops of the MC1R resulted in a substantial loss of AGRP binding affinity and inhibitory activity. Conversely, the exchange of exoloops 2 and 3 of the MC1R with the homologous exoloops of the MC4R was found to confer AGRP binding and inhibitory activity to the basic structure of the MC1R. Importantly, these substitutions did not affect the ability of the alpha-melanocyte stimulating hormone analogue [Nle4,D-Phe7] melanocyte stimulating hormone to bind or activate the chimeric receptors. These data indicate that exoloops 2 and 3 of the melanocortin receptors are important for AGRP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号