首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the capacity of different clones derived from the same tumor to generate highly antigenic cells after in vitro exposure to UV radiation. Cells from the metastatic murine melanoma K1735 and clones of K1735 differing in metastatic potential were exposed to UV radiation in vitro, cloned, and tested for antigenic properties in vivo. Approximately half of the clones isolated after UV irradiation of parental K1735 melanoma cells were highly antigenic (five of nine). Similar treatment of cells of a nonmetastatic clone of K1735 generated clones that were all antigenic (nine of nine). In contrast, only one of nine clones derived from UV-irradiated cells of a highly metastatic clone of K1735 were antigenic. Clones derived from unirradiated cultures were not antigenic variants. The increased antigenicity of cells derived from UV-irradiated cultures did not correlate with an increase in expression of cell surface class I major histocompatibility complex antigens. These results demonstrate that the frequency of antigenic variant production after UV irradiation is an intrinsic property of the particular cell line used, and that even cloned cell lines derived from a single tumor differ in their ability to generate antigenic variants after UV irradiation. In addition, they indicate that the increased antigenicity is not necessarily due to a UV-induced increase in expression of cell surface class I histocompatibility antigens.  相似文献   

2.
Ultraviolet radiation (UV) is a potent carcinogen for the induction of skin tumors. In this regard, UV represents a unique carcinogenic agent, in that depending on the dosage and conditions of administration it can function as either a complete carcinogen, a carcinogenic promoting agent, or an immunologic modulator of anti-tumor rejection responses. The immunologic modulatory activity of UV has been demonstrated in numerous studies. These studies have shown that subcarcinogenic doses of UV induce a population of suppressor T lymphocytes (Ts cells) that allow for the emergence and progression of UV-induced tumors. Although the phenotypic and functional properties of these cells have been established, it was unclear as to whether the UV-induced Ts cell population consisted of multiple Ts cell clones able to recognize a range of unique tumor antigens or a limited number of Ts cell clones with functional specificity directed toward a common tumor-associated antigen (TAA). To address this question, an interleukin 2-dependent, UV-induced cloned Ts cell line was derived, by limiting dilution without exogenous antigen stimulation, from the splenic T cell population of a C3H mouse that had been exposed to a subcarcinogenic dose of UV. This Ts cell line, designated UV2.10, was selected for its ability to suppress the in vitro differentiation of cytotoxic T cells from the draining lymph nodes of UV-induced tumor-immune mice. When transferred into non-UV-irradiated syngeneic mice, which normally reject a UV-induced tumor implant, the UV2.10 cells rendered their hosts susceptible to the growth of a battery of UV-induced tumors. Although capable of suppressing in vitro and in vivo UV-induced tumor-immune responses, UV2.10 cells did not inhibit the elicitation of contact hypersensitivity responses, the rejection of allogeneic skin grafts, responses, the rejection of allogeneic skin grafts, or the rejection of allogeneic UV-induced tumors. These data suggest that the cloned UV2.10 Ts cell line possesses functional antigenic specificity that may be limited to the regulation of immune responses that are directed toward the TAA expressed by syngeneic UV-induced tumors. Employing monoclonal antibodies and FACS analysis, the cell surface phenotype of the UV2.10 cell line was determined to be: Thy-1.2+, Lyt-1-, Lyt-2+/- (dim), L3T4a-, I-A/E-, and I-J+. This cell surface phenotype is indicative of a suppressor T cell. These data lend further support to the hypothesis that the UV-induced Ts cell population is clonal in nature and functions through its ability to recognize a common TAA(s) that appears to be expressed by virtually all UV-induced tumors.  相似文献   

3.
Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and are frequently immunologically rejected upon transplantation to normal syngeneic recipients. In this study we characterized this immune response with an in vitro microcytotoxicity test. Cytotoxic activity was present in the spleen cells of mice given a single injection of syngeneic UV-induced fibrosarcoma cells. After removal of adherent spleen cells, the remaining splenic lymphocytes were specifically cytotoxic for the immunizing tumor and showed no cross-reactivity with other syngeneic UV-induced or methylcholanthrene-induced tumors of similar histologic type. The level of cell-mediated reactivity against UV-induced tumors was quite high compared to that obtained with syngeneic tumors induced by methylcholanthrene, and the cytotoxicity was attributable to a population of theta antigen-bearing lymphocytes. With this in vitro test, we compared the response of normal mice, which reject a syngeneic tumor challenge, with that of UV-irradiated mice, in which the syngeneic UV-induced tumors grow progressively. After tumor cell inoculation, lymphocytes form the unirradiated (regressor) mice showed a high degree of cytotoxicity that reached a maximum level 8 days after injection. In contrast, no reactivity could be detected in the spleens of tumor-challenged UV-irradiated (progressor) mice.  相似文献   

4.
The purpose of this study was to determine the role of T helper (Th) cells in the immune response to UV-induced tumors. Repeated exposure of mice to UV radiation results in the production of suppressor T lymphocytes that facilitate tumor growth by inhibiting host immunity. To investigate whether the suppressor T cells inhibit the response to UV tumors by blocking the generation of Th, we employed an indirect method for measuring helper cell activity. We found that Th were produced in normal mice after immunization with UV-induced tumors. These Th appeared to be specific for the immunizing tumors, in contrast to the UV-induced suppressor cells, which recognize UV-induced tumors as a group. The suppressor T cells responsible for inhibiting tumor rejection have no effect on tumor-specific helper cell activity in vitro. However, UV-induced suppressor T cells transferred into unirradiated mice seem to block the generation of helper cell activity after immunization with UV-produced tumors. These results suggest the UV-induced suppressor cells may prevent tumor rejection by blocking the generation of Th.  相似文献   

5.
This report describes the induction, phenotypic characteristics, and functional properties of a continuous suppressor T cell line. This cell line, UV1, is capable of suppressing anti-tumor immune responses both in vivo and in vitro. The UV1 cell line was derived from a T cell-enriched (nylon wool nonadherent, Ia-negative panned fraction) spleen cell population from a ultraviolet radiation-(UV) exposed BALB/c Wehi mouse. By using an in vivo functional assay designed to demonstrate tumor-specific UV-induced suppressor T lymphocyte (Ts cell) activity, it was found that UV1 cells were capable of rendering normal syngeneic mice susceptible to the growth of UV-induced regressor tumors. In addition to their suppressive activity in vivo, UV1 cells displayed in vitro suppressive activity by blocking the differentiation of cytotoxic T cells from the draining lymph nodes of UV-tumor immunized animals. By flow cytometric analysis it was determined that UV1 cells expressed a number of T lymphocyte differentiation antigens and did not express any detectable amounts of surface immunoglobulin, I-A or E/C antigens, Fc receptors, or macrophage antigens. These data suggest that the UV1 cell line may be representative of the UV-induced Ts cell population and provide a potential means for studying UV-induced immunoregulatory mechanisms in greater detail.  相似文献   

6.
Lymphocytes were cloned from animals bearing UV-induced skin tumors. These cells were I-J+, CD4-, CD8-, and had become growth factor independent. Extracts, but not supernatants, of these clones suppressed primary immune reactions in vitro against UV-induced tumors, but not methylcholanthrene-induced tumors. The cells therefore had the functional characteristics of afferent suppressor T cells directed against a common Ag on UV-induced tumors. Surface iodination of the clones revealed an extremely low level expression of molecules that might be TCR or related molecules.  相似文献   

7.
Although previous studies have shown that altered B7 costimulation plays a critical role in UV irradiation-induced regulation of immunity, the individual roles of the B7 receptors (CD28 and CTLA-4) or the B7 family members (CD80 and CD86) have not been explored. Thus, we investigated CTLA-4 signaling during photocarcinogenesis of chronically UV-B-exposed mice using an antagonistic anti-CTLA-4 Ab. Anti-CTLA-4-treated mice developed significantly fewer UV-induced tumors. Moreover, anti-CTLA-4 treatment induced long-lasting protective immunity because progressively growing UV tumors inoculated into anti-CTLA-4- and UV-treated mice that had not developed tumors were rejected. Next, we used mice deficient for CD80, CD86, or both in photocarcinogenesis studies to assess the relative contributions of these CTLA-4 ligands. Double-deficient mice showed significantly reduced UV-induced skin tumor development, whereas CD86(-/-) mice produced skin cancer earlier compared with CD80(-/-) and control mice. The growth of UV-induced tumors appears to be controlled by UV-induced suppressor T cells, because CD80(-/-)/CD86(-/-) mice had strongly reduced numbers of UV-induced CD4(+)CD25(+) suppressor T cells. In vitro, CTLA-4 blockade inhibited the suppressor activity of UV-induced CD4(+)CD25(+) T cells, suggesting that reduced photocarcinogenesis might be due to decreased numbers or function of suppressor T cells. Together, these data indicate that blocking CD80/86-CTLA-4 signaling induced immune protection against the development of UV-induced skin tumors. Furthermore, CD86-mediated costimulation appears to play a more critical role in the protection against photocarcinogenesis than CD80.  相似文献   

8.
Cells exposed to UV irradiation are predominantly arrested at S-phase as well as at the G(1)/S boundary while repair occurs. It is not known how UV irradiation induces S-phase arrest and yet permits DNA repair; however, UV-induced inhibition of replication is efficiently reversed by the addition of replication protein A (RPA), suggesting a role for RPA in this regulatory event. Here, we show evidence that DNA-dependent protein kinase (DNA-PK), plays a role in UV-induced replication arrest. DNA synthesis of M059K (DNA-PK catalytic subunit-positive (DNA-PKcs(+))), as measured by [(3)H]thymidine incorporation, was significantly arrested by 4 h following UV irradiation, whereas M059J (DNA-PKcs(-)) cells were much less affected. Similar results were obtained with the in vitro replication reactions where immediate replication arrest occurred in DNA-PKcs(+) cells following UV irradiation, and only a gradual decrease in replication activity was observed in DNA-PKcs(-) cells. Reversal of replication arrest was observed at 8 h following UV irradiation in DNA-PKcs(+) cells but not in DNA-PKcs(-) cells. Reversal of UV-induced replication arrest was also observed in vitro by the addition of a DNA-PK inhibitor, wortmannin, or by immunodepletion of DNA-PKcs, supporting a positive role for DNA-PK in damage-induced replication arrest. The RPA-containing fraction from UV-irradiated DNA-PKcs(+) cells poorly supported DNA replication, whereas the replication activity of the RPA-containing fraction from DNA-PKcs(-) cells was not affected by UV, suggesting that DNA-PKcs may be involved in UV-induced replication arrest through modulation of RPA activity. Together, our results strongly suggest a role for DNA-PK in S-phase (replication) arrest in response to UV irradiation.  相似文献   

9.
The effect of low doses of ionizing and nonionizing radiation on the radiation response of yeast Saccharomyces cerevisiae toward ionizing and nonionizing radiation was studied. The wild-type strain D273-10B on exposure to 54 Gy gamma radiation (resulting in about 10% cell killing) showed enhanced resistance to subsequent exposure to UV radiation. This induced UV resistance increased with the incubation time between the initial gamma radiation stress and the UV irradiation. Exposure to low doses of UV light on the other hand showed no change in gamma or UV radiation response of this strain. The strains carrying a mutation at rad52 behaved in a way similar to the wild type, but with slightly reduced induced response. In contrast to this, the rad3 mutants, defective in excision repair, showed no induced UV resistance. Removal of UV-induced pyrimidine dimers in wild-type yeast DNA after UV irradiation was examined by analyzing the sites recognized by UV endonuclease from Micrococcus luteus. The samples that were exposed to low doses of gamma radiation before UV irradiation were able to repair the pyrimidine dimers more efficiently than the samples in which low gamma irradiation was omitted. The nature of enhanced repair was studied by scoring the frequency of induced gene conversion and reverse mutation at trp and ilv loci respectively in strain D7, which showed similar enhanced UV resistance induced by low-dose gamma irradiation. The induced repair was found to be essentially error-free. These results suggest that irradiation of strain D273-10B with low doses of gamma radiation enhances its capability for excision repair of UV-induced pyrimidine dimers.  相似文献   

10.
UV radiation is known to induce lymphocyte nonresponsiveness both in vitro and in vivo. We have found that UV radiation rapidly induced tyrosine phosphorylation and calcium signaling in normal human peripheral blood lymphocytes. In the leukemic T cell line Jurkat and the Burkitt's lymphoma cell line Ramos, UV rapidly induced tyrosine phosphorylation in a wavelength-dependent manner, giving strong signals after UVB and UVC, but not UVA, irradiation. Similarly, in Jurkat cells UV-induced calcium signals were dependent on the dose of UVB or UVC irradiation over a range of 150-1200 J/m2, but only a small signal was observed for UVA at a dose of 1200 J/m2. The UV-induced calcium signals were blocked by the tyrosine kinase inhibitor herbimycin A, indicating that they were dependent on tyrosine phosphorylation. Phospholipase C (PLC) gamma 1 was tyrosine phosphorylated in response to UV irradiation but to a lesser extent than observed after CD3 cross-linking. However, PLC gamma 1-associated proteins demonstrated to bind to the PLC gamma 1 SH2 domain were tyrosine phosphorylated strongly after UV irradiation. A similar dose response was observed for the inhibition by herbimycin A of UV-induced calcium signals and UV-induced tyrosine phosphorylation of PLC gamma 1 and associated proteins. We propose that in contrast to CD3/Ti stimulation, UV aberrantly triggers lymphocyte signal transduction pathways by a mechanism that bypasses normal receptor control.  相似文献   

11.
After mutagenesis of mouse mastocytoma P815, it is possible to obtain at high frequency stable tumor cell variants (tum-) that are rejected by syngeneic DBA/2 mice. Most of the variants express one or more new individual antigens specific for each variant, that are detectable in vitro by cytolytic T cells (CTL). Somatic hybrids were prepared either between tum- variants and the original P815 clone, or between different variants. Antigen expression of the hybrids was assessed by using long-term CTL clones that recognize specifically the new antigen present on the variants. Expression of tum- variant antigens behaved as a dominant trait in the hybrids. By submitting the somatic hybrids to selection with CTL clones, it was possible to obtain antigen-loss hybrid variants. The analyses of these antigen-loss variants showed that two variant-specific antigenic determinants associated with one of the variant fusion partners could be lost independently. Like the parental tum- variants, both the (tum+ X tum-) and (tum- X tum-) hybrids failed to form tumors in normal mice but formed tumors in irradiated mice.  相似文献   

12.
In an attempt to understand and ascertain the stimulatory effects of low-dose ionising radiation, a study was conducted to compare the changes in the UV-induced repair capacity of human blood cells exposed to low conditioning doses of ionising radiation under in vivo and in vitro conditions. A significant increase in the rate of UV induced Unscheduled DNA synthesis (UDS) in lymphocytes pre-exposed to low doses of ionising radiation was observed both under in vitro and in vivo conditions. There was also a significant correlation between the adapting dose and net UDS in lymphocytes of radiation workers implying that the triggering action of the adaptation process is dose dependent. However, on comparing the extent of UV-induced UDS of the in vivo and in vitro exposures, significantly higher rates of UDS were observed in the lymphocytes of radiation workers when compared to a corresponding in vitro adapting dose. We postulate that the response in vivo is much more pronounced due to cell repopulating events and extra cellular secretory factors like hormones etc,.  相似文献   

13.
Sister-chromatid exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells.Continuous post-UV treatment with 1 mM caffeine markedly enhanced UV-induced SCEs in 3 of 4 UDS-proficient XP cell lines but had only slight effects on cells from the 4th UDS-proficient XP patient and from normal individuals.  相似文献   

14.
The in vitro transformation of hamster embryo fibroblasts by herpes simplex virus type 1 (HSV-1) after exposure of the virus to UV irradiation is described. Cell transformation was induced by 2 out of 12 strains of HSV-1 that were tested for transforming potential. Cells transformed by the KOS strain of HSV-1 were not oncogenic when injected into newborn Syrian hamsters. However, cells transformed by HSV-1 strain 14-012 induced tumors in 47% of the newborn hamsters injected. HSV-specific antigens were found in the cytoplasm of cells transformed by both virus strains. Sera from tumor-bearing hamsters contained HSV-1- and HSV-2-neutralizing antibodies as well as antibodies which reacted specifically with HSV antigens by the indirect immunofluorescence technique. Hamster oncornavirus antigens were not detected by immunofluorescence methods. These observations represent the first evidence of the oncogenic potential of HSV-1.  相似文献   

15.
The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer.  相似文献   

16.
Two gamma-ray-sensitive and two ultraviolet (UV)-sensitive variants were isolated from the gamma-ray- and UV-resistant TN-368 lepidopteran insect cell line. The isolation was performed by inducing mutations in the TN-368 cells using ethyl methanesulfonate, growing them for an expression period, irradiating with 137Cs gamma rays or 254-nm UV radiation, allowing cells to incorporate 5-bromodeoxyuridine (BrdU) in the presence of hydroxyurea (DNA repair synthesis), and finally irradiating with 365-nm UV radiation to cause DNA strand breakage at sites of BrdU incorporation with the intent of killing those cells that have undergone DNA repair synthesis and sparing those cells which, for a variety of reasons, did not. The survival of the Cs2 and Cs7 variants exposed to X rays is significantly different from the parent TN-368 line at the P less than 0.0001 level. The survival of the UV10 and UV19 variants exposed to UV radiation is different from the parent at the P less than 0.0001 and P less than 0.003 levels, respectively. In cross-sensitivity testing of the gamma-ray-sensitive variants, only Cs2 is more sensitive to 254-nm UV and only Cs7 is more sensitive to 44 degrees C heating; both are sensitive to PUVA. The UV-sensitive mutants are both sensitive to X irradiation, PUVA, and mitomycin C. However, UV10 is not sensitive to 44 degrees C heating while UV19 is, making UV19 the only variant strain sensitive to all agents examined. Despite the isolation procedure which was intended to select for DNA repair-deficient cells, the results suggest that a more general mechanism is responsible for the sensitivity of the variant cells to the agents tested.  相似文献   

17.
Cytotoxic responses of UV-irradiated mice against syngeneic UV-induced tumors were measured by using a 51Cr-release assay to determine if UV treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the "memory" response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of UV-treated mice against syngeneic, UV-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic UV-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, UV-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses.  相似文献   

18.
Chronic treatment of BALB/c mice with ultraviolet (uv) radiation produces two distinct immunologic deficiencies. These deficiencies are apparent long before visible skin tumors are induced by the uv irradiation. One is reflected in a transient inability to develop delayed hypersensitivity to dinitrochlorobenzene and appears to be due to a defect in antigen processing. The other is expressed by the failure of mice to reject syngeneic uv-induced tumors, which are highly antigenic. This lack of tumor rejection can be passively transferred with lymphoid cells and seems to be due to the presence of specific suppressor lymphocytes.  相似文献   

19.
In humans, inactivation of the DNA polymerase eta gene (pol eta) results in sunlight sensitivity and causes the cancer-prone xeroderma pigmentosum variant syndrome (XP-V). Cells from XP-V individuals have a reduced capacity to replicate UV-damaged DNA and show hypermutability after UV exposure. Biochemical assays have demonstrated the ability of pol eta to bypass cis-syn-cyclobutane thymine dimers, the most common lesion generated in DNA by UV. In most cases, this bypass is error-free. To determine the actual requirement of pol eta in vivo, XP-V cells (XP30RO) were complemented by the wild type pol eta gene. We have used two pol eta-corrected clones to study the in vivo characteristics of mutations produced by DNA polymerases during DNA synthesis of UV-irradiated shuttle vectors transfected into human host cells, which had or had not been exposed previously to UV radiation. The functional complementation of XP-V cells by pol eta reduced the mutation frequencies both at CG and TA base pairs and restored UV mutagenesis to a normal level. UV irradiation of host cells prior to transfection strongly increased the mutation frequency in undamaged vectors and, in addition, especially in the pol eta-deficient XP30RO cells at 5'-TT sites in UV-irradiated plasmids. These results clearly show the protective role of pol eta against UV-induced lesions and the activation by UV of pol eta-independent mutagenic processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号