首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cardiac ventricular myocytes extrude a sizeable amount of their total Mg2+ content upon stimulation by β-adrenergic agonists. This extrusion occurs within a few minutes from the application of the agonist, suggesting the operation of rapid and abundantly represented Mg2+ transport mechanisms in the cardiac sarcolemma. The present study was aimed at characterizing the operation of these transport mechanisms under well defined conditions. Male Sprague-Dawley rats were used to purify a biochemical standardized preparation of sealed rat cardiac sarcolemmal vesicles. This experimental model has the advantage that trans-sarcolemmal cation transport can be studied under specific extra- and intra-vesicular ionic conditions, in the absence of intracellular organelles, and buffering or signaling components. Magnesium ion (Mg2+) transport was assessed by atomic absorbance spectrophotometry. The results reported here indicate that: (1) sarcolemma vesicles retained trapped intravesicular Mg2+ in the absence of extravesicular counter-ions; (2) the addition of Na+ or Ca2+ induced a rapid and concentration-dependent Mg2+ extrusion from the vesicles; (3) co-addition of maximal concentrations of Na+ and Ca2+ resulted in an additive Mg2+ extrusion; (4) Mg2+ extrusion was blocked by addition of amiloride or imipramine; (5) pre-treatment of sarcolemma vesicles with alkaline phosphatase at the time of preparation completely abolished Na+- but not Ca2+-induced Mg2+ extrusion; (6) Na+-dependent Mg2+ transport could be restored by stimulating vesicles loaded with protein kinase A catalytic subunit and ATP with membrane-permeant cyclic-AMP analog; (7) extra-vesicular Mg2+ could be accumulated in exchange for intravesicular Na+ via a mechanism inhibited by amiloride or alkaline phosphatase treatment; (8) Mg2+ accumulation could be restored via cAMP/protein kinase A protocol. Overall, these data provide compelling evidence for the operation of distinct Na+- and Ca2+-dependent Mg2+ extrusion mechanisms in sarcolemma vesicles. The Na+-dependent mechanism appears to be specifically activated via protein kinase A/cAMP-dependent phosphorylation process, and can operate in either direction based upon the cation concentration gradient across the sarcolemma. The Ca2+-dependent mechanism, instead, only mediates Mg2+ extrusion in a cAMP-independent manner.  相似文献   

2.
The Na+/Mg2+ exchanger represents the main Mg2+ extrusion mechanism operating in mammalian cells including hepatocytes. We have previously reported that this exchanger, located in the basolateral domain of the hepatocyte, promotes the extrusion of intravesicular trapped Mg2+ for extravesicular Na+ with ratio 1. This electrogenic exchange is supported by the accumulation of tetraphenyl-phosphonium within the vesicles at the time when Mg2+ efflux occurs. In this present study, the role of extra- and intra-vesicular Cl? on the Na+/Mg2+ exchange ratio was investigated. The results reported here suggest that Cl? ions are not required for the Na+ to Mg2+ exchange to occur, but the stoichiometry ratio of the exchanger switches from electrogenic (1Na in + :1 Mg out 2+ ) in the presence of intravesicular Cl? to electroneutral (2Na in + :1 Mg out 2+ ) in their absence. In basolateral liver plasma membrane vesicles loaded with MgCl2 labeled with 36Cl?, a small but significant Cl? efflux (~30 nmol Cl?/mg protein/1 min) is observed following addition of NaCl or Na-isethionate to the extravesicular medium. Both Cl? and Mg2+ effluxes are inhibited by imipramine but not by amiloride, DIDS, niflumic acid, bumetanide, or furosemide. In vesicles loaded with Mg-gluconate and stimulated by Na-isethionate, an electroneutral Mg2+ extrusion is observed. Taken together, these results suggest that the Na+/Mg2+ exchanger can operate irrespective of the absence or the presence of Cl? in the extracellular or intracellular environment. Changes in trans-cellular Cl? content, however, can affect the modus operandi of the Na+/Mg2+ exchanger, and consequently impact "cellular" Na+ and Mg2+ homeostasis as well as the hepatocyte membrane potential.  相似文献   

3.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

4.
As part of the enterohepatic circulation, taurocholate is taken up by hepatocytes by a Na+-gradient-dependent, carrier-mediated process. The dependence of taurocholate uptake on the presence of a Na+ gradient, outside greater than inside, has been studied in isolated rat liver plasma membranes. The uptake is specific for sodium, and a cotransport stoichiometry of 2 Na+ per taurocholate taken up was found. The presence of K+ ions inside the vesicles was also found to be essential for maximum Na+-stimulated uptake of taurocholate, although a K+ gradient is not required. Mg2+ was almost as effective as K+ in this regard. The symport of Na+ and taurocholate during uptake was shown to be electrogenic, so that K+ may act as an exchange counterion preventing the accumulation of positive charge within the vesicles.Dedicated to the memory of Prof. David E. Green, friend, mentor, and colleague.  相似文献   

5.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCα.In non-Mg2+-loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+-loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCα or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+-loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+-loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl. Mg2+-loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl]i.  相似文献   

6.
Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain unclear. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 and migration of RBA-1 cells, which were inhibited by pretreatment with the inhibitor of Gq-coupled receptor (GPAnt2A), Gi/o-coupled receptor (GPAnt2), PC-PLC (D609), PI-PLC (U73122), Ca2+-ATPase (thapsigargin, TG), calmodulin (CaMI), CaMKII (KN62), PKC (Gö6976 or GF109203X), MEK1/2 (PD98059), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) or the intracellular calcium chelator (BAPTA/AM) and transfection with siRNA of PKCα, Erk2, JNK1, p38 MAPK, c-Jun, or c-Fos. In addition, thrombin-induced elevation of intracellular Ca2+ concentration was attenuated by PPACK (a thrombin inhibitor). Thrombin further induced CaMKII phosphorylation and PKCα translocation, which were inhibited by U73122, D609, KN62, TG, or BAPTA/AM. Thrombin also induced PKCα-dependent p42/p44 MAPK and JNK1/2, but not p38 MAPK activation. Finally, we showed that thrombin enhanced c-Fos expression and c-Jun phosphorylation. c-Fos mRNA levels induced by thrombin were reduced by PD98059, SP600125, and Gö6976, but not SB202190. Thrombin stimulated in vivo binding of c-Fos to the MMP-9 promoter, which was reduced by pretreatment with SP600125 or PD98059, but not SB202190. These results concluded that thrombin activated a PLC/Ca2+/CaMKII/PKCα/p42/p44 MAPK and JNK1/2 pathway, which in turn triggered AP-1 activation and ultimately induced MMP-9 expression in RBA-1 cells.  相似文献   

7.
Na+-H+ exchange and passive Na+ flux were investigated in cardiac sarcolemmal vesicles as a function of changing the ionic composition of the reaction media. The inclusion of EGTA in the reaction medium resulted in a potent stumulation of Na+ uptake by Na+-H+ exchange. It was found that millimolar concentrations of Mg2+ and Li+ were capable of inhibiting Na+-H+ exchange by 80%. One mechanism by which these ions may inhibit intravesicular Na+ accumulation by Na+-H+ exchange is via an increase in Na+ efflux. An examination of Na+ efflux kinetics from vesicles pre-loaded with Na+ revealed that Na+, Ca2+, Mg2+ and Li+ could stimulate Na+ efflux. Na+-H+ exchange was potently inhibited by an organic divalent cation, dimenthonium, which screens membrane surface charge. This would suggest that Na+-H+ exchange occurs in the diffuse double layer region of cardiac sarcolemma and this phenomenon is distinctly different from other Na+ transport processes. The results in this study indicate that in addition to a stimulation of Na+ efflux, the inhibitory effects of Mg2+, Ca2+ and Li+ on Na+-H+ exchange may also involve a charge dependent screening of Na+ interactions with the membrane.  相似文献   

8.
K+-dependent Na+/Ca2+-exchanger isoform 4 (NCXK4) is one of the most broadly expressed members of the NCKX (K+-dependent Na+/Ca2+-exchanger) family. Recent data indicate that NCKX4 plays a critical role in controlling normal Ca2+ signal dynamics in olfactory and other neurons. Synaptic Ca2+ dynamics are modulated by purinergic regulation, mediated by ATP released from synaptic vesicles or from neighbouring glial cells. Previous studies have focused on modulation of Ca2+ entry pathways that initiate signalling. Here we have investigated purinergic regulation of NCKX4, a powerful extrusion pathway that assists in terminating Ca2+ signals. NCKX4 activity was stimulated by ATP through activation of the P2Y receptor signalling pathway. Stimulation required dual activation of PKC (protein kinase C) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). Mutating T312, a putative PKC phosphorylation site on NCKX4, partially prevented purinergic stimulation. These data illustrate how purinergic regulation can shape the dynamics of Ca2+ signalling by activating a signal damping and termination pathway.  相似文献   

9.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

10.
Summary In the presence of inhibitors for mitochondrial H+-ATPase, (Na++K+)- and Ca2+-ATPases, and alkaline phosphatase, sealed brush-border membrane vesicles hydrolyse externally added ATP demonstrating the existence of ATPases at the outside of the membrane (ecto-ATPases). These ATPases accept several nucleotides, are stimulated by Ca2+ and Mg2+, and are inhibited by N,N-dicyclohexylcarbodiimide (DCCD), but not by N-ethylmaleimide (NEM). They occur in both brushborder and basolateral membranes. Opening of brush-border membrane vesicles with Triton X-100 exposes ATPases located at the inside (cytosolic side) of the membrane. These detergent-exposed ATPases prefer ATP, are activated by Mg2+ and Mn2+, but not by Ca2+, and are inhibited by DCCD as well as by NEM. They are present in brush-border, but not in basolateral membranes. As measured by an intravesicularly trapped pH indicator, ATP-loaded brush-border membrane vesicles extrude protons by a DCCD- and NEM-sensitive pump. ATP-driven H+ secretion is electrogenic and requires either exit of a permeant anion (Cl) or entry of a cation, e.g., Na+ via electrogenic Na+/d-glucose and Na+/l-phenylalanine uptake. In the presence of Na+, ATP-driven H+ efflux is stimulated by blocking the Na+/H+ exchanger with amiloride. These data prove the coexistence of Na+-coupled substrate transporters, Na+/H+ exchanger, and an ATP-driven H+ pump in brush-border membrane vesicles. Similar location and inhibitor sensitivity reveal the identity of ATP-driven H+ pumps with (a part of) the DCCD- and NEM-sensitive ATPases at the cytosolic side of the brush-border membrane.  相似文献   

11.
Isolated hepatocytes in physiological [Na+] 0 tightly maintain [Mg2+] i . Upon β-adrenergic stimulation or in the presence of permeable cAMP, hepatocytes release 5–10% (1–3 mM Mg2+) of their total Mg2+ content. However, isolated basolateral liver plasma membranes (bLPM), release Mg2+ in the presence of [Na+] o even in the absence of catecholamine stimulation. The data indicate that a physiological brake for Mg2+ efflux is present in the hepatocyte and is removed upon cellular signaling. In contrast, this regulation “brake” is absent in purified bLPM thus rendering them fully active. The present study was carried out to reconstruct the missing regulatory component. Activation of Mg2+ extrusion in intact cells is consistent with cAMP dependent phosphorylation of the transporter or a regulatory protein. Treatment of bLPM with a non-specific phosphatase such as alkaline phosphatase (AP), decreased Mg2+ efflux by 70% compared to untreated bLPM. When AP-treated bLPM were loaded with protein kinase A (PKA), and stimulated with permeable cAMP, Mg2+ transport fully recovered. These data suggest that phosphorylation of the Na+/Mg2+ exchanger or a nearby protein activates the Mg2+ transport mechanism in hepatocytes.  相似文献   

12.
Summary Patch-clamp techniques were used to study the permeability to ions of an ATP-sensitive channel in membranes from the pancreatic B-cell line (RINm5F). With patches in the outside-out configuration, theI-V curves for different Na+–K+ mixtures in the bath and 140 mM K+ in the pipette were almost linear, and crossed the zero-current axis at voltages that indicated a variable permeability ratio. When K+ was added symmetrically, the plot of the conductancevs. K+ activity exhibited saturation, with aG max of about 160 pS and a half-maximal activity of 216 mM. TheI-V behavior for different K+–Na+ mixtures in the bath could be accurately described with a model based on Eyring theory, assuming two sites and one-ion occupancy. For K+, the dissociation constants (KK) of the two sites were 290 and 850 mM, the lower value pertaining to the site close to the intracellular medium. In experiments with inside-out patches, both Na+ and Mg2+, when present in the bath, induced a voltagedependent block of the outward current. Fitting the data with the model suggested that for these ions only one of the two sites binds significantly, the corresponding dissociation constants being (mM): 46 for Na+ and 34 for Mg2+. Blocking by Na+ and Mg2+ may account for the low outward current seen in intact cells. This hypothesis is consistent with the observation that such current is further reduced by addition of 2,4-DNP, since metabolism inhibitors are expected to lower the ATP level, thereby liberating Mg2+ from the Mg2+-ATP complex, as well as inducing accumulation of Na+ by decreasing the rate of the Na+–K+ pump.  相似文献   

13.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

14.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

15.
The presence of Ca2+ ions in solution is vital for root growth. The plasma membrane is one of the first sites where competition between Ca2+ and other ions occurs. We studied the competition between Ca2+ and Na+ or Mg2+ for sorption sites on the plasma membrane of melon root cells.Sorption of 45Ca2+ to right-side-out PM vesicles of melon (Cucumis melo L.) roots (prepared by aqueous two-phase partitioning) was studied at various Ca2+ concentrations, in the presence of increasing concentrations of Na+ or Mg2+ chlorides. Experimentally determined amounts of Ca2+ sorbed to the plasma membrane vesicles agreed fairly well with those calculated from a competitive sorption model. The best fit of the model to the experimental data was obtained for an average surface area of 370 Å2 per charge, and binding coefficients for Na+, Mg2+ and Ca2+ of 0.8, 9 and 50 m -1, respectively.Our results suggest that nonphospholipid components in the plasma membrane contribute significantly to Ca2+ binding. The high affinity of Ca2+ binding to the plasma membrane found in this study might explain the specific role of Ca2+ in relieving salt stress in plant roots.This research was supported by the GIFRID German-Israel fund for research and international development.  相似文献   

16.
Quinine inhibits the respiration-dependent extrusion of K+ from Mg2+-depleted heart mitochondria and the passive osmotic swelling of these mitochondria in K+ and Na+ acetate at alkaline pH. These observations concur with those of Nakashima and Garlid (J. Biol. Chem. 257, 9252, 1982) using rat liver mitochondria. Quinine also inhibits the respiration-dependent contraction of heart mitochondria swollen passively in Na+ or K+ nitrate and the increment of elevated respiration associated with the extrusion of ions from these mitochondria. Quinine, at concentrations up to 0.5 mM, inhibits the respiration-dependent42K+/K+ exchange seen in the presence of mersalyl, but higher levels of the drug produce increased membrane permeability and net K+ loss from the matrix. These results are all consistent with an inhibition of the putative mitochondrial K+/H+ antiport by quinine. However, quinine has other effects on the mitochondrial membrane, and possible alternatives to this interpretation are discussed.  相似文献   

17.
Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. Mg2+ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular Mg2+ concentration ([Mg2+]i) in human umbilical vein endothelial cells (HUVECs). bFGF increased [Mg2+]i in a dose-dependent manner, independent of extracellular Mg2+. This bFGF-induced [Mg2+]i increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase Cγ (PLCγ) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced [Mg2+]i increase. These results suggest that bFGF increases the [Mg2+]i from the intracellular Mg2+ stores through the tyrosine kinase/PI3K/PLCγ-dependent signaling pathways.  相似文献   

18.
Previous work showed that in hamster red cells the amiloride-sensitive (AS) Na+ influx of 0.8 mmol/liter cells/hr is not mediated by Na-H exchange as in other red cells, but depends upon intracellular Mg2+ and can be increased by 40-fold by loading cells with Mg2+ to 10 mm. The purpose of this study was to verify the connection of AS Na+ influx with Na-dependent, amiloride-sensitive Mg2+ efflux and to utilize AS Na+ influx to explore that pathway.Determination of unidirectional influx of Na+ and net loss of Mg2+ in parallel sets of cells showed that activation by extracellular [Na+] follows a simple Michaelis-Menten relationship for both processes with a K m of 105–107 mm and that activation of both processes is sigmoidally dependent upon cytoplasmic [Mg2+] with a [Mg2+]0.5 of 2.1–2.3 mm and a Hill coefficient of 1.8. Comparison of Vmax for both sets of experiments indicated a stoichiometry of 2 Na: l Mg. Amiloride inhibits Na+ influx and Mg2+ extrusion in parallel (K i = 0.3 mm). Like Mg2+ extrusion, amiloride-sensitive Na+ influx shows an absolute requirement for cytoplasmic ATP and is increased by cell swelling. Hence, amiloride-sensitive Na+ influx in hamster red cells appears to be through the Na-Mg exchange pathway.There was no amiloride-sensitive Na+ efflux in hamster red cells loaded with Na+ and incubated with high [Mg2+] in the medium with or without external Na+, nor with ATP depletion. Hence, this is not a simple Na-Mg exchange carrier.  相似文献   

19.
Summary Microsomal fractions were isolated from gastric antrum and fundus smooth muscle of guinea pigs. Ca2+ uptake into and Ca2+ release from the membrane vesicles were studied by a rapid filtration method, and Ca2+ transport properties of the different regions of the stomach were compared. ATP-dependent Ca2+ uptake was similar in microsomes isolated from both regions. This uptake was increased by oxalate and was not affected by NaN3. Oxalate affected Ca2+ permeability of both antrum and fundus microsome vesicles similarly. Fundus microsome vesicles preincubated in 100mm NaCl and then diluted to 1/20 concentration with Na+-free medium had significantly higher ATP-independent Ca2+ uptake than vesicles preincubated in 100mm KCl and treated the same way. This was not true for antrum vesicles. Monensin abolished Na+-dependent Ca2+ uptake, and NaCl enhanced Ca2+ efflux from fundus microsome vesicles. The halflife values of Ca2+ loss from fundus vesicles in the presence of NaCl were significantly smaller than those in the presence of KCl. The release of Ca2+ from the vesicles within the first 3 min was accelerated by NaCl to three times that by KCl. However, NaCl had ro effect on Ca2+ release from antrum microsome vesicles.Results suggest two distinct mechanisms of stomach membrane Ca2+ transport: (1) ATP-dependent Ca2+ uptake and (2) Na+–Ca2+ exchange; the latter in the fundus only.  相似文献   

20.
To examine the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and extra-cellular signal-regulated kinase (ERK) in the oxidative stress-induced increase of permeability in endothelial cells, the effects of a p38 MAPK inhibitor (SB203580) and ERK inhibitor (PD90859) on the H2O2-induced increase of permeability in bovine pulmonary artery endothelial cells (BPAEC) were investigated using a two-compartment system partitioned by a semi-permeable filter. H2O2 at 1 mM caused an increase of the permeation rate of fluorescein isothiocyanate (FITC)-labeled dextran 40 through BPAEC monolayers. SB203580 inhibited the H2O2-induced increase of permeability but PD98059 did not, though activation (phosphorylation) of both p38 MAPK and ERK was observed in H2O2-treated cells in Western blot analysis. An H2O2-induced increase of the intracellular Ca2+ concentration ([Ca2+]i) was also observed and an intracellular Ca2+ chelator (BAPTA-AM) significantly inhibited the H2O2-induced increase of permeability. However, it showed no inhibitory effects on the H2O2-induced phosphorylation of p38 MAPK and ERK. The H2O2-induced increase of [Ca2+]i was not influenced by SB203580 and PD98059. These results indicate that the activation of p38 MAPK and the increase of [Ca2+]i are essential for the H2O2-induced increase of endothelial permeability and that ERK is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号