首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Valinomycin binds to soluble and reconstituted cytochrome c oxidase (COX) in a stoichiometric manner, as shown by a spectral shift of the oxidized gamma-band. No spectral change is found with nigericin or 18-crown-6 and in the absence of potassium ions. Titration of the proton pumping activity of reconstituted COX with valinomycin reached a maximum of H+/e- - 0.73 after addition of 1 mole of valinomycin per mole of reconstituted COX. It is concluded that K+-translocation in proton-pumping COX vesicles occurs via enzyme-bound valinomycin.  相似文献   

3.

Aims

Metarhizin A was originally isolated from Metarhizium flavoviride as a potent inhibitor of the growth of insect and mammalian cells. In this study, we aimed to understand the molecular targets of metarhizin A involved in its anti-proliferative activity against human cells.

Main methods

Cell cycle regulators and signaling molecules were examined by immunoblotting using specific antibodies. A mitochondria-enriched fraction was prepared from mouse liver, and mitochondrial activity was monitored using an oxygen electrode. Enzyme activity was measured using purified cytochrome c oxidase and permeabilized cells.

Key findings

Metarhizin A inhibits the growth of MCF-7 cells with an IC50 value of ~ 0.2 μM and other cells in a similar manner; a cell cycle-dependent kinase inhibitor, p21, is selectively induced. Significant amounts of reactive oxygen species (ROS) are generated and ERK1/2 is activated in cells treated with metarhizin A. Metarhizin A completely suppresses oxygen consumption by mitochondria, and potently inhibits the activity of cytochrome c oxidase. It induces cell death when MCF-7 cells are cultured under limiting conditions.

Significance

Metarhizin A is a potent inhibitor of cytochrome c oxidase and activates the MAPK pathway through the generation of ROS, which induces growth arrest of cells, and, under some conditions, enhances cell death. The cytochrome c oxidase system is a possible molecular target of metarhizin A.  相似文献   

4.
A quantitative analysis of H+ extrusion by reconstituted cytochrome c oxidase vesicles is presented with particular regard to the decay kinetics of the extruded proton pulse and to the structural heterogeneity of the vesicle preparation. The decay of the extruded H+ pulse under conditions typical of those used for its measurement is much slower than expected from the passive proton permeability of the vesicle membranes. It is shown that this apparent anomaly results from insufficient transmembrane charge equilibration via valinomycin and K+ during oxidase turnover. This situation can be remedied by increasing the valinomycin concentration or by replacing this counterion system with 1 mM tetraphenylphosphonium. Under these latter conditions, the decay kinetics can be described as the sum of two exponential terms. To facilitate interpretation of the proton pump decay kinetics, a structural analysis of the oxidase vesicle preparation is presented. The bulk of the reconstituted vesicles (i.e., those representing approx. 80% of the total oxidase and lipid) are 30-62 nm in diameter. At least 70% of the reconstituted oxidase molecules are contained individually in separate vesicles, indicating that the enzyme monomer is competent in H+ translocation.  相似文献   

5.
6.
Incubation of soluble complex III isolated from either yeast or beef heart mitochondria with 25-100 nmol of [14C]dicyclohexylcarbodiimide (DCCD)/nmol of cytochrome b followed by centrifugation through 10% sucrose or precipitation with trichloroacetic acid did not result in any changes in the appearance of the subunits of either complex. The [14C]DCCD was bound to cytochrome b and phospholipids in the yeast complex and with similar kinetics to both cytochrome b and subunit VIII (Mr = 4000-8000) plus phospholipids of the beef complex. Subunit VIII of the beef complex was partially extracted with chloroform:methanol; however, no subunit of this mobility was present in the yeast complex. Incubation of the beef complex in phosphate buffer for short times resulted in a doubling of the [14C]DCCD bound to cytochrome b relative to that to subunit VIII. Preincubation of both complexes with venturicidin prior to treatment with DCCD resulted in a 50% decrease in the binding of [14C]DCCD to cytochrome b. Reisolation of the beef complex III by precipitation with (NH4)2SO4 after incubation with [14C]DCCD resulted in the formation of a new band with an apparent molecular weight of 39,000 even in the zero time control. The [14C]DCCD was bound to subunit VIII and the core proteins but not to cytochrome b at all times, suggesting that precipitation with (NH)2SO4 in the presence of DCCD causes cross-linking of the subunits of complex III.  相似文献   

7.
Cells lacking ataxia telangiectasia mutated (ATM) have impaired mitochondrial function. Furthermore, mammalian cells lacking ATM have increased levels of reactive oxygen species (ROS) as well as mitochondrial DNA (mtDNA) deletions in the region encoding for cytochrome c oxidase (COX). We hypothesized that ATM specifically influences COX activity in skeletal muscle. COX activity was ∼40% lower in tibialis anterior from ATM-deficient mice than for wild-type mice (P < 0.01, n = 9/group). However, there were no ATM-related differences in activity of succinate dehydrogenase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, mitochondrial glycerol 3-phosphate dehydrogenase, or complex III. Incubation of wild-type extensor digitorum longus muscles for 1 h with the ATM inhibitor KU55933 caused a ∼50% reduction (P < 0.05, n = 5/group) in COX activity compared to muscles incubated with vehicle alone. Among the control muscles and muscles treated with the ATM inhibitor, COX activity was correlated (r = 0.61, P < 0.05) with activity of glucose 6-phosphate dehydrogenase, a key determinant of antioxidant defense through production of NADPH. Overall, the findings suggest that ATM has a protective role for COX activity.  相似文献   

8.
S B Vik  R A Capaldi 《Biochemistry》1977,16(26):5755-5759
Cytochrome c oxidase depleted of endogenous lipid by detergent exchange has been reconstituted into vesicles with synthetic lipids of known head group and fatty acid composition and enzymic activities have been measured. No evidence for head group specificity was found. However, the enzyme does require the fluid environment provided by unsaturated fatty acids. The state of dispersion of the enzyme was found to affect the activities regenerated in reconstitution studies. The highest activities were obtained using lysolecithin containing an oleoyl fatty acid as the lipid component.  相似文献   

9.
10.
The CO----methylene blue and CO----dichlorophenol indophenol activities of carbon monoxide oxidase were specifically activated upon aerobic incubation with selenite, whereas the NADH----methylene blue activity was not altered. Fully active enzyme contained selenium, molybdenum, and flavin adenine dinucleotide in a 1:1:1 ratio. Selenium was covalently bound to the protein, probably between the sulfurs of half-cystine residues, and not a constituent of the molybdenum cofactor. The action of selenite was directed to the cytoplasmic species of carbon monoxide oxidase exclusively, whereas the CO----methylene blue activity of the membrane-bound enzyme remained unaffected.  相似文献   

11.
12.
Over the past decade it was discovered that, over-and-above multiple regulatory functions, nitric oxide (NO) is responsible for the modulation of cell respiration by inhibiting cytochrome c oxidase (CcOX). As assessed at different integration levels (from the purified enzyme in detergent solution to intact cells), CcOX can react with NO following two alternative reaction pathways, both leading to an effective, fully reversible inhibition of respiration. A crucial finding is that the rate of electron flux through the respiratory chain controls the mechanism of inhibition by NO, leading to either a "nitrosyl" or a "nitrite" derivative. The two mechanisms can be discriminated on the basis of the differential photosensitivity of the inhibited state. Of relevance to cell pathophysiology, the pathway involving the nitrite derivative leads to oxidative degradation of NO, thereby protecting the cell from NO toxicity. The aim of this work is to review the information available on these two mechanisms of inhibition of respiration.  相似文献   

13.
Dilatometry is a sensitive technique for measuring volume changes occurring during a chemical reaction. We applied it to the reduction-oxidation cycle of cytochrome c oxidase, and to the binding of cytochrome c to the oxidase. We measured the volume changes that occur during the interconversion of oxidase intermediates. The numerical values of these volume changes have allowed the construction of a thermodynamic cycle that includes many of the redox intermediates. The system volume for each of the intermediates is different. We suggest that these differences arise by two mechanisms that are not mutually exclusive: intermediates in the catalytic cycle could be hydrated to different extents, and/or small voids in the protein could open and close. Based on our experience with osmotic stress, we believe that at least a portion of the volume changes represent the obligatory movement of solvent into and out of the oxidase during the combined electron and proton transfer process. The volume changes associated with the binding of cytochrome c to cytochrome c oxidase have been studied as a function of the redox state of the two proteins. The volume changes determined by dilatometry are large and negative. The data indicate quite clearly that there are structural alterations in the two proteins that occur on complex formation.  相似文献   

14.
15.
Reactions of mercaptans with cytochrome c oxidase and cytochrome c   总被引:2,自引:0,他引:2  
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 microM, respectively. 2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme. 3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M-1 . s-1 and a dissociation constant Kd of 3.9 mM. 4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M-1 . s-1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes. 5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome alpha 3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

16.
The reactions of horse heart cytochrome c with succinate-cytochrome c reductase and cytochrome oxidase were studied as a function of ionic strength using both spectrophotometric and oxygen electrode assay techniques. The kinetic parameter Vmax/Km for both reactions decreased very rapidly as the ionic strength was increased, indicating that electrostatic interactions were important to the reactions. A new semiempirical relationship for the electrostatic energy of interaction between cytochrome c and its oxidation-reduction partners was developed, in which specific complementary charge-pair interactions between lysine amino groups on cytochrome c and negatively charged carboxylate groups on the other protein are assumed to dominate the interaction. The contribution of individual cytochrome c lysine amino groups to the electrostatic interaction was estimated from the decrease in reaction rate caused by specific modification of the lysine amino groups by reagents that change the charge to 0 or -1. These estimates range from -0.9 kcal/mol for lysines immediately surrounding the heme crevice of cytochrome c to 0 kcal/mol for lysines well removed from the heme crevice region. The semiempirical relationship for the total electrostatic energy of interaction was in quantitative agreement with the experimental ionic strength dependence of the reaction rates when the parameters were based on the specific lysine modification results. The electrostatic energies of interaction between cytochrome c and its reductase and oxidase were nearly the same, providing additional evidence that the two reactions take place at similar sites on cytochrome c.  相似文献   

17.
A detailed study of the effect of temperature on the m.c.d. (magnetic circular dichroism) spectra of cytochrome c oxidase and some of its derivatives was undertaken to characterize the spin states of haem a and a(3). The fully reduced enzyme contains haem a(3) (2+) in its high-spin form and haem a(2+) in the low-spin state. This conclusion is reached by comparing the spectrum with that of the mixed-valence CO derivatives and its photolysis product. The cyanide derivative of the fully reduced enzyme contains both haem a and a(3) in the low-spin ferrous form. The m.c.d. spectra of the fully oxidized derivatives are consistent with the presence of one low-spin ferric haem group, assigned to a, which remains unaltered in the presence of ligands. Haem a(3) is high spin in the resting enzyme and the fluoride derivatives, and low spin in the cyanide form. The partially reduced formate and cyanide derivatives have temperature-dependent m.c.d. spectra due to the presence of high- and low-spin haem a(3) (3+) respectively. Haem a is low-spin ferrous in both. A comparison of the magnitude of the temperature-dependence of haem a(3) (3+) in the fully oxidized and partially reduced forms shows a marked difference which is tentatively ascribed to the presence of anti-ferromagnetic coupling in the fully oxidized form of the enzyme, and to its absence from the partially reduced derivatives, owing to the reduction of both Cu(2+) ions.  相似文献   

18.
S H Chan  J A Freedman 《FEBS letters》1983,162(2):344-348
Antibodies to solubilized cytochrome c oxidase and to subunit III were incubated with liposomal oxidase. In oxygen uptake experiments, the inhibiting effects on RCI of anti-oxidase (primarily anti- subunits II and IV) and anti-III were by different mechanisms: the former, by inhibiting the uncoupled rate; the later, by stimulating the coupled rate. In experiments with H+ translocation, anti-oxidase was without effect, while anti-III was a potent inhibitor of proton pumping. These results are conclusive evidence for redox-linked proton extrusion from the vesicles by the oxidase (and its subunit III).  相似文献   

19.
Ubiquinol-cytochrome c reductase (Complex III), cytochrome c and cytochrome c oxidase can be combined to reconstitute antimycin-sensitive ubiquinol oxidase activity. In 25 mM-acetate/Tris, pH 7.8, cytochrome c binds at high-affinity sites (KD = 0.1 microM) and low-affinity sites (KD approx. 10 microM). Quinol oxidase activity is 50% of maximal activity when cytochrome c is bound to only 25% of the high affinity sites. The other 50% of activity seems to be due to cytochrome c bound at low-affinity sites. Reconstitution in the presence of soya-bean phospholipids prevents aggregation of cytochrome c oxidase and gives rise to much higher rates of quinol oxidase. The cytochrome c dependence was unaltered. Antimycin curves have the same shape regardless of lipid/protein ratio, Complex III/cytochrome c oxidase ratio or cytochrome c concentration. Proposals on the nature of the interaction between Complex III, cytochrome c and cytochrome c oxidase are considered in the light of these results.  相似文献   

20.
The effects of pH on the activity and structure of beef heart cytochrome c oxidase have been studied in the pH range 5.0-7.6. (i) A group with pK of approximately 5.45 has been readily detected in the pH vs. activity curve. This group must be deprotonated to achieve maximal activity. (ii) A group with a similar pK (5.45) has been detected and contributes to the spectral character of the reduced oxidase. Over the range pH 5.0-7.6 no other acid-sensitive group contributes to the spectrum of the reduced oxidase. (iii) The oxidized oxidase shows at least three acid-sensitive groups contributing to the spectrum. One occurs in the pH 7 range and another in the pH 5.6 range; below pH 5.2 additional pH-sensitive groups are apparent. Accurate estimation of the pK's of the groups responsible for the spectral changes in the oxidized oxidase has not been possible. (iv) The spectrum of the "oxygenated" (428 nm) conformer of the oxidized protein is invariant over the range ph 5.5-7. (v) The changes occurring in the spectrum of the purified oxidase also occur in the protein contained in phospholipid vesicles. (vi) The data are discussed in terms of the mechanism by which the oxidase, during its in situ catalytic cycle, may give rise to the primary events in energy coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号