首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribulose bisphosphate carboxylase (rubisco) is the first enzyme in photosynthetic CO2 assimilation. It is also the single largest sink for nitrogen in plants. Several parameters of rubisco activity are often measured including initial activity upon extraction, degree of carbamylation, catalytic constant of the enzyme (kcat), and the total amount of enzyme present in a leaf. We report here improvements of the photometric assay of rubisco in which rubisco activity is coupled to NADH oxidation which is continuously monitored in a photometer. The initial lag usually found in this assay was eliminated by assaying rubisco activity at pH 8.0 instead of 8.2, using a large amount of phosphoglycerate kinase, and adding monovalent cations to the assay buffer. We found that when using the photometric assay, the ratio of activity found initially upon extraction divided by the activity after incubating with CO2 and Mg2+ reflects the degree of carbamylation as determined by 14carboxyarabinitol bisphosphate/12carboxyarabinitol bisphosphate competition. We developed methods for measuring the catalytic constant of rubisco as well as the total amount of enzyme present using the photometric assay and carboxyarabinitol 1,5-bisphosphate. We believe that the photometric assay for activity will prove more useful than the 14CO2 assay in many studies.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - GAP glyceraldehyde 3-phosphate - OD optical density - PGA 3-phosphoglycerate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

2.
In some plants, 2-carboxy-d-arabinitol 1-phosphate (CA 1P) is tightly bound to catalytic sites of ribulose, 1,5-bisphosphate carboxylase/oxygenase (rubisco). This inhibitor's tight binding property results from its close resemblance to the transition state intermediate of the carboxylase reaction. Amounts of CA 1P present in leaves varies with light level, giving CA 1P characteristics of a diurnal modulator of rubisco activity. Recently, a specific phosphatase was found that degrades CA 1P, providing a mechanism to account for its disappearance in the light. The route of synthesis of CA 1P is not known, but could involve the branched chain sugar, hamamelose. There appear to be two means for diurnal regulation of the number of catalytic sites on rubisco: carbamylation mediated by the enzyme, rubisco activase, and binding of CA 1P. While strong evidence exists for the involvement of rubisco activase in rubisco regulation, the significance of CA 1P in rubisco regulation is enigmatic, given the lack of general occurrence of CA 1P in plant species. Alternatively, CA 1P may have a role in preventing the binding of metabolites to rubisco during the night and the noncatalytic binding of ribulose bisphosphate in the light.  相似文献   

3.
Carboxyarabinitol 1-phosphate (CA1P) phosphatase activity occurredin leaves of 10 species examined, with the highest activityin leaves of Phaseolus vulgaris. Enzyme was purified from P.vulgaris 1,580-fold to a final specific activity of 6.1 µmolmin–1 (mg protein)–1. Structural characteristicsof positive effectors and substrate analogs for the CA1P phosphatasereaction were examined. Positive effectors were compounds thatcontained one phosphate group in close proximity to a secondphosphate or a carboxyl group (e.g. 2-phosphoglycolate, pyrophosphate,3-phosphoglycerate, and carboxyethylphosphonic acid). Many ofthe activators are structurally quite similar to CA1P, but werenot used as substrates. In addition to the natural substrateCA1P, carboxypentitol and carboxyhexitol bisphosphates wereshown to be good substrates (e.g. carboxyarabinitol bisphosphateand carboxymannitol bis-phosphate). A substrate arabinitol configuration(R) was preferred at C-2, and reactivity was lost when a hydroxymethylgroup was substituted for the carboxyl group. Despite structuralsimilarities to positive effectors, none of the tested reactionsubstrates could activate the enzyme. (Received November 11, 1996; Accepted February 3, 1997)  相似文献   

4.
2-Carboxyarabinitol 1-phosphate (CAIP) is involved in the regulationof ribulose 1,5-bisphosphate carboxylase (rubisco) activityin many plants, but the biochemical pathway for its synthesisis unknown. In an attempt to induce synthesis of 14C-CAIP invivo, intact leaflets of Phaseolus vulgaris were pulse-labeledwith 14CO2 and chased with 12CO2 under conditions which resultin leaves accumulating unlabeled CAIP. Sugar-phosphates wereisolated from leaf extracts by anion exchange chromatographyand constituent metabolites were separated by 2D-thin-layerchromatography. No l4C-labeled CAIP was recovered from extractsprepared from leaves experiencing a range of exposure/chaseconditions, a range of leaf/plant ages, or from other speciesdiffering in their ability to accumulate unlabeled CAIP. Appropriatecontrol experiments indicated no loss of 14C-standard whichhad been added at the time of killing the leaf. The data suggestthat carboxyarabinitol 1-phosphate is not synthesized in vivoas some "misfire" catalysis by rubisco, and that the precursorto its synthesis is far "downstream" of CO2 fixation. (Received May 11, 1990; Accepted July 19, 1990)  相似文献   

5.
The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. 14C-labeled standard was synthesized from [2-14C]carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO2 assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role.  相似文献   

6.
Rubisco activase is a chloroplast stromal protein that catalyzesthe activation of ribulose-1,5- bisphosphate carboxylase/oxygenase(rubisco) in vivo. Activation must occur before rubisco cancatalyze the photosynthetic assimilation of CO2. In leaves,photosynthesis and rubisco activation increase with increasinglight intensity. Techniques are described that allow the activityof rubisco activase to be measured in extracts of spinach (Spinaceaoleracea L.) leaf tissue. In this context, rubisco activaseactivity is defined as the ability to promote activation ofthe inactive ribulose-1,5- bisphosphate-bound rubisco in anATP-dependent reaction. Determination of rubisco activase activityin extracts of dark and light treated leaf tissue revealed thatthe activation state of rubisco activase was independent oflight intensity. 1Present address: Department of Biological Sciences, 213 Carson-TaylorHall, Louisiana Tech University, Ruston, Louisiana 71272, U.S.A.  相似文献   

7.
Rubisco Activity: Effects of Drought Stress   总被引:27,自引:3,他引:24  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activityis modulated in vivo either by reaction with CO2 and Mg2+ tocarbamylate a lysine residue in the catalytic site, or by thebinding of inhibitors within the catalytic site. Binding ofinhibitors blocks either activity or the carbamylation of thelysine residue that is essential for activity. At night, inmany species, 2-carboxyarabinitol-1-phosphate (CA1P) is formedwhich binds tightly to Rubisco, inhibiting catalytic activity.Recent work has shown that tight-binding inhibitors can alsodecrease Rubisco activity in the light and contribute to theregulation of Rubisco activity. Here we determine the influencethat such inhibitors of Rubisco exert on catalytic activityduring drought stress. In tobacco plants, ‘total Rubiscoactivity’, i.e. the activity following pre-incubationwith CO2 and Mg2+, was positively correlated with leaf relativewater content. However, ‘total Rubisco activity’in extracts from leaves with low water potential increased markedlywhen tightly bound inhibitors were removed, thus increasingthe number of catalytic sites available. This suggests thatin tobacco the decrease of Rubisco activity under drought stressis not primarily the result of changes in activation by CO2and Mg2+ but due rather to the presence of tight-binding inhibitors.The amounts of inhibitor present in leaves of droughted tobaccobased on the decrease in Rubisco activity per mg soluble proteinwere usually much greater than the amounts of the known inhibitors(CA1P and ‘daytime inhibitor’) that can be recoveredin acid extracts. Alternative explanations for the differencebetween maximal and total activities are discussed.  相似文献   

8.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   

9.
An important question concerning the role of carboxyarabinitol 1-phosphate (CA1P) metabolism in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity is the extent to which CA1P is bound to Rubisco in vivo. We report here the development of an extraction procedure using ammonium sulfate that stabilizes CA1P bound to Rubisco. This procedure exploits the ability of sulfate to bind at the catalytic site of Rubisco and to competitively balance the binding and release of CA1P from Rubisco. In darkened bean leaves about 75% of the Rubisco catalytic sites were found to be bound with CA1P. This confirms previous indirect estimates from gas exchange measurements. We have used this extraction procedure to examine CA1P-Rubisco interactions in bean during a natural transition from darkness to light. With increasing light intensity following sunrise, CA1P degradation proceeded in two distinct phases: first, a majority of the unbound CA1P pool was degraded at very low light levels ([less than or equal to]30 [mu]mol quanta m-2 s-1); second, CA1P initially bound to Rubisco was then degraded at increasing light levels (>30 [mu]mol quanta m-2 s-1). These results indicate that there is a low-fluence activation of CA1P phosphatase that can occur prior to CA1P release by Rubisco activase. This activation may be mediated by NADPH. During sunrise in bean, the level of the catalytically competent form of Rubisco was regulated by CA1P metabolism.  相似文献   

10.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

11.
The three-dimensional quantitative leaf anatomy in developingyoung (9–22 d) first leaves of wild type Arabidopsis thalianacv. Landsberg erecta from mitosis through cell and leaf expansionto the cessation of lamina growth has been studied. The domainsof cell division, the relative proportion of the cell typespresent during development and the production of intercellularspace in the developing leaf have been determined by image analysisof entire leaves sectioned in three planes. Mitotic activityoccurs throughout the youngest leaves prior to unfolding andcell expansion is initiated firstly at the leaf tip with a persistentzone of mitotic cells at the leaf base resulting in a gradientof development along the leaf axis, which persists in the olderleaves. Major anatomical changes which occur during the developmentare, a rapid increase in mesophyll volume, an increase in thevein network, and expansion of the intercellular spaces. Thepattern of cell expansion results in a 10-fold variation inmesophyll cell size in mature leaves. In the youngest leavesthe plan area of mesophyll cells varies between 100 µm2and 400 µm2 whereas in mature leaves mesophyll cells rangein plan area from 800 µm2 to 9500 µm2. The volumesof mesophyll tissue and airspace under unit leaf area increase3-fold and 35-fold, respectively, during leaf expansion. Thevolume proportions of tissue types mesophyll:airspace:epiderrnal:vascularin the mature leaf are 61:26:12:1, respectively. This studyprovides comparative information for future identification andanalysis of leaf development mutants of Arabidopsis thaliana. Key words: Arabidopsis, quantitative leaf anatomy, leaf expansion, image analysis  相似文献   

12.
Young tomato plants were exposed to two weeks of chilling undernon-photoinhibiting or mild photoinhibiting conditions. Thedevelopment of the leaves was studied under chilling and controlconditions by measuring several physiological parameters. Agradual decrease of the efficiency of the photosynthetic apparatuswith maturation and ageing occurred in unchilled plants. Thiswas reflected by gradual changes in CO2-saturated photosynthesisand protein and rubisco contents. Except for senescing leaves,a correlation close to 1 : 1 was observed between maximum rubiscoactivity and CO2-saturated photosynthesis. Chlorophyll (Chl)contents and photochemical chlorophyll fluorescence quenchingshowed strong decreases only in the last phase of senescencein the oldest leaves. In plants chilled under non-photoinhibitingconditions (10C, 100–150 µE m–2 s–1or 6C, 30–50 µE m-2 s–1), a similar patternof ageing was observed, and no indications were found for aninduction of protein or rubisco degradation by chilling. Sincethese plants stopped growing in the cold, they revealed lowertotal photosynthetic capacities than unchilled plants of thesame size. When the chilling conditions were mildly photoinhibitory(6C, 100–150 µE m–2 s–1), a much strongerdepression of rubisco activity and photosynthetic capacity wasfound in all leaves, which was partly reversible in the youngones. This decrease in CO2fixation capacity, in turn, led toa higher susceptibility of the chilled plants to photoinhibitionat 20C. It is concluded that the decrease of both photosyntheticcapacity and growth after long-term chilling in tomato is aconsequence of the preceeding ageing and senescing of the leavesduring chilling, in contrast to chilling-tolerant species withthe ability for acclimation to low temperatures. (Received April 26, 1993; Accepted September 7, 1993)  相似文献   

13.
During the growth of leaves of Pisum sativum L., levels of asparaginase(E.C. 3.5.1.1 [EC] ) showed a diurnal variation during a 3 d periodof leaf expansion, increasing in the light and decreasing inthe dark period; the greatest diurnal variation being foundin half-expanded leaves. Asparaginase activity in half-expandedleaves reached a maximum after 4 h exposure to light and thisactivity was maintained over the rest of the light period. Changesin asparaginase activity were not influenced by diurnal temperaturechanges. The increase in asparaginase activity during the lightperiod was directly proportional to the photon flux densityover the range 0–285 µmol m-2 s-1 PAR. The increaseof asparaginase activity during illumination of detached leaveswas inhibited by the photosynthetic electron transport inhibitors3-(3', 4'-dichlorophenyl)-1, 1-dimethylurea (DCMU) and atrazine.These observations indicate that the increase in asparaginaseactivity in half-expanded leaves is dependent upon non-cyclicelectron transport. Key words: Pisum sativum, asparaginase, photosynthetic electron transport  相似文献   

14.
The present study explores the potential contribution of theenergy requirements associated with nocturnal carbohydrate exportto (1) the fraction of dark respiration correlating with leafnitrogen concentration and (2) the dark respiration of maturesource leaves. To this end, we determined the nocturnal carbohydrate-exportrates from leaves with an optimal nitrogen supply, and the correlationbetween the nitrogen concentration and the dark respirationof leaves. The specific energy costs of carbohydrate exportfrom starch-storing source leaves were determined both experimentallyand theoretically. The present estimate of the specific energycost involved in carbohydrate export as obtained by linear regression(0.70 mol CO2 [mol sucrose]–1), agrees well with bothliterature data obtained by different methods (0.47 to 1.26mol CO2 [mol sucrose]–1) and the theoretically calculatedrange for starch-storing species (0.40 to 1.20 mol CO2 [molsucrose]–1). The conversion of starch in the chloroplastto sucrose in the cytosol is a major energy-requiring process.Maximally 42 to ‘107’% of the slope of the relationshipbetween respiration rate and organic nitrogen concentrationof primary bean leaves, may be ascribed to the energy costsassociated with nocturnal export of carbohydrates. Total energycosts associated with export were derived from the product ofthe specific costs of carbohydrate export and the export rates,either measured on full-grown (primary) leaves of potato andbean or derived from the literature. These export costs account,on average, for 29% of the dark respiration rate in starch-storingspecies. We conclude that nocturnal carbohydrate export is amajor energy-requiring process in starch-storing species Key words: Carbohydrate export, leaf dark respiration, nitrogen concentration, respiratory costs, specific energy cost  相似文献   

15.
Photosynthetic parameters, growth, and pigment contents were determined during expansion of the fourth leaf of in vitro photoautotrophically cultured Nicotiana tabacum L. plants at three irradiances [photosynthetically active radiation (400–700 nm): low, LI 60 μmol m−2 s−1; middle, MI 180 μmol m−2 s−1; and high, HI 270 μmol m−2 s−1]. During leaf expansion, several symptoms usually accompanying leaf senescence appeared very early in HI and then in MI plants. Symptoms of senescence in developing leaves were: decreasing chlorophyll (Chl) a+b content and Chl a/b ratio, decreasing both maximum (FV/FM) and actual (ΦPS2) photochemical efficiency of photosystem 2, and increasing non-photochemical quenching. Nevertheless, net photosynthetic oxygen evolution rate (P N) did not decrease consistently with decrease in Chl content, but exhibited a typical ontogenetic course with gradual increase. P N reached its maximum before full leaf expansion and then tended to decline. Thus excess irradiance during in vitro cultivation did not cause early start of leaf senescence, but impaired photosynthetic performance and Chl content in leaves and changed their typical ontogenetic course.  相似文献   

16.
Acclimation of rice to changing atmospheric carbon dioxide concentration   总被引:26,自引:14,他引:12  
Abstract. The effects were studied of season-long (75 and 88d) exposure of rice (Oryza sativa L. cv. IR-30) to a range of atmospheric CO2 concentrations in outdoor, computer-controlled, environment chambers under natural solar radiation. The CO2 concentrations were maintained at 160, 250, 330, 500, 660 and 900μmol mol-1 air. Photosynthesis increased with increasing growth CO2 concentrations up to 500u.mol moP1, but levelled off at higher CO2 values. Specific leaf area also increased significantly with increasing CO2. Although leaf dry weight and leaf area index increased, the overall response was not statistically significant. Leaf nitrogen content dropped slightly with elevated CO2, but the response was not statistically significant. The specific activity of ribulose bisphosphate carboxylase/oxygenase (rubisco) declined significantly over the CO2 concentration range 160 to 900μmol mol-1. When expressed on a leaf area basis, rubisco activity decreased by 66%. This was accompanied by a 32% decrease in the amount of rubisco protein as a fraction of the total soluble leaf protein, and by 60% on a leaf area basis. For leaves in the dark, the total rubisco activity (CO2/Mg2+-activated) was reduced by more than 60%. This indicates that rice accumulated an inhibitor in the dark, probably 2-car-boxyarabinitol 1-phosphate (CA-1-P). However, the inhibitor did not seem to be involved in the acclimation response. The degree of carbamylation of the rubisco enzyme was unchanged by the CO2 growth regime, except at 900 [μmol mol-1 where it was reduced by 24%. The acclimation of rice to different atmospheric CO2 conditions involved the modulation of both the activity and amount of rubisco protein in the leaf.  相似文献   

17.
Modulation of the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in low light and darkness was measured in A) 25 genotypes from the four cultivated species of Phaseolus (P. vulgaris, P. acutifolius, P. lunatus and P. coccineus), B) 8 non-cultivated Phaseolus species, and C) the related species Macroptileum atropurpureum. The activity ratio of Rubisco (the ratio of initial and total Rubisco activities, which reflects Rubisco carbamylation), and the molar activity of fully-activated Rubisco (which primarily reflects the inhibition of Rubisco activity by carboxyarabinitol 1-phosphate, CA1P) were assayed in leaves from the cultivated species sampled at midday in full sunlight, in low light at dusk (60 to 100 mol photons m-2s-1), and after at least 4 h in darkness. Dark inhibition of Rubisco molar activity was compared in both cultivated and non-cultivated species. In all cultivated genotypes, a significant reduction of the activity ratio of Rubisco was measured in leaves sampled at low light; however, the molar activity of fully activated Rubisco was not greatly reduced in these low light samples. In darkened leaves, molar activities substantially declined in most Phaseolus species with 11 of 13 exhibiting greater than 60% reduction. In P. vulgaris, the reduction of molar activity was extensive (greater than 69%) in all genotypes studied, which included wild progenitors as well as ancient and advanced cultivars. These results indicate that at low light late in the day, modulation of Rubisco activity is primarily through changes in carbamylation state, with CA1P playing a more limited role. By contrast in the dark, binding of CA1P dominates the modulation of Rubisco activity in Phaseolus in a pattern that appears to be conserved within a species, but can vary significantly between species within a genus. The degree of CA1P inhibition in Phaseolus was associated with phylogenetic affinities within the genus, as the species with extensive dark-inhibition of Rubisco activity tended to be more closely related to each other than to species with reduced inhibition of Rubisco activity.Abbreviations CA1P carboxyarabinitol 1-phosphate - CABP carboxyarabinitol bisphosphate - PFD photon flux density between 400 and 700 nm - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
Light Activation of Rubisco by Rubisco Activase and Thylakoid Membranes   总被引:1,自引:0,他引:1  
A reconstituted system comprising ribulose bisphosphate carboxylase/oxygenase(rubisco), rubisco activase, washed thylakoid membranes, andATP was used to demonstrate a light-dependent stimulation ofrubisco activation. ATP, ribulose bisphosphate, H+, and Mg2+concentrations are normally light-dependent variables in thechloroplast but were maintained at pre-determined levels. Resultsindicated that rubisco activase and washed thylakoid membranesare sufficient to catalyze light stimulation of rubisco activationwith the reconstituted system, and that rubisco activase isrequired for this light stimulation. The washed thylakoid membranesdid not exhibit rubisco activase activity, nor was rubisco activaseprotein detected immunologically. Light-dependent activationof rubisco in the reconstituted system was similar in whole-chainand PS I electron transport reactions, and saturated at approximately100 µmol photons m–2 s–1. 1 Present address: Department of Biological Sciences, LouisianaTech University, Ruston, LA 71272, U.S.A.  相似文献   

19.
Effects of irradiance on changes in the amounts of chlorophyll(Chl) and light-harvesting chlorophyll a/b protein of PS II(LHCII) were examined in senescing leaves of rice (Oryza sativaL.). Results of treatments at two irradiances (100% and 20%natural sunlight) were examined after the full expansion ofthe 13th leaf throughout the course of senescence. With 20%sunlight, the Chl content decreased only a little during leafsenescence, while with 100% sunlight it decreased appreciably.Similarly, the amount of LHCII protein during treatment with20% sunlight remained almost constant. However, the ratio ofChl a/b during the shade treatment decreased significantly andthe rate of decrease was greater than during the full-sunlighttreatment. The ratio of Chl a/b for Chl a and b bound to LHCIIwas about 1.2, irrespective of leaf age or irradiance treatment.When the amounts of Chl bound to LHCII were calculated fromthe total leaf content of Chl and the ratio of Chl a/b, assuminga ratio of Chl a/b bound to LHCII of 1.2, they were well correlatedwith the amounts of LHCII protein. Changes in the amounts of LHCII synthesized during the two irradiancetreatments were examined using an 15 tracer. Incorporation of15N into LHCII declined dramatically during both treatmentsfrom full expansion through senescence, suggesting that therewas little synthesis of LHCII protein during that time. In addition,the amount of LHCII synthesized during senescence was lowerduring the shade treatment than during the 100% sunlight treatment.These results indicate that the absence of an apparent changein levels of LHCII with shade treatment during senescence wascaused by the very low rate of turnover of LHCII protein. (Received June 17, 1992; Accepted September 28, 1992)  相似文献   

20.
Discs of French bean leaves were vacuum infiltrated with solutionscontaining 14C-labelled substances. The infiltrated discs wereeither transferred immediately to darkness or first illuminatedfor 2 h and then transferred to darkness. After 6 h in darknessthe discs were extracted with buffer containing CO2, Mg2+ andadditional ribulose-1, 5-bisphosphate carboxylase/oxygenase(Rubisco; EC 4.1.1.39 [EC] ). Protein in the extracts was separatedfrom substances of low molecular weight by gel filtration andcoagulated by heating to 100C. Coagulated protein was removedby centrifugation and cations in the supernatant solution wereremoved by ion exchange resin. The non-volatile anions in theresulting solutions, among which was 21-carboxy-D-arabinitol-1-phosphate(CA1P), were separated by HPLC. The amount of CA1P was determinedfrom the signal of a pulsed amperometric detector and its radioactivityby scintillation counting. Vacuum infiltration of [2114C]21-carboxy-D-arabinitol (CA) resulted in 12.6% of the radioactivityin the leaf discs being in CA1P after 6 h in darkness and 21.6%when 2 h light was given before the dark treatment. Where radioactiveglucose, fructose, sucrose, hamamelose, glycerate, glycine oracetate were infiltrated, 14C in CA1P was less than 1% of thetotal present after the dark period with or without a precedingperiod of light. Incorporation of 14C from [14C] CA into CA1Pin darkness was strongly inhibited by 2,4-dinitrophenol andalso to a lesser extent by tentoxin. With both inhibitors themain effect was a decreased uptake of the substrate. Illuminationprior to darkness stimulated the incorporation of radioactivityfrom CA, glycine, glucose, sucrose, and hamamelose into CA1Pin subsequent darkness. Unlike the other substrates, which wereextensively metabolized, CA and hamamelose were converted tofew products; CA was converted almost exclusively to CA1P andCA1P was a major product of hamamelose metabolism. Key words: CA1P, Phaseolus vulgaris, precursors, synthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号