首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phage phi29 suppressor-sensitive (sus) mutants of 14 cistrons have been examined for production of (14)C-labeled viral-specific proteins in restrictive infections of Bacillus subtilis. Proteins specified by four cistrons (H, J, L, and N) have been resolved and identified by sodium dodecyl sulfate gel electrophoresis and autoradiography, and fragments of the normal polypeptides were detected. Mutants of six cistrons (C, D, E, F, I, and M) demonstrated two or more missing bands in the gel profiles, and thus some of these gene products may have regulatory functions. Mutation was detected in at least five genes coding for low-molecular-weight proteins, but a conditionally lethal mutant in only one of these genes has been isolated. Preliminary evidence that a precursor protein is cleaved to generate the neck appendage structural protein and a low-molecular-weight product has been obtained.  相似文献   

2.
Twenty-three (14)C-labeled phage phi29-specific proteins in lysates of UV-irradiated Bacillus subtilis have been resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis and identified by autoradiography. Included in this group of proteins are the six major structural proteins of the virion. Analysis of the temporal sequence of viral protein synthesis indicates that three groups of proteins can be identified by time of appearance, beginning at 2 to 4, 4 to 6, or 8 to 10 min after infection, respectively. These proteins account for approximately 90% of the coding capacity of the phi29 genome.  相似文献   

3.
A mutant at the carboxyl end of the terminal protein, p3, of phage phi 29 DNA has been constructed by inserting an containing the stop translation codon TGA in the three possible reading frames, immediately downstream of a phage phi 29 DNA fragment coding for all but the last five amino acids of protein p3. The activity in the formation of the p3-dAMP initiation complex in vitro of this mutant as well as another one previously isolated, also mutated at the carboxyl end, have been tested. The results obtained suggest that an intact carboxyl end in the phage phi 29 terminal protein is essential for its normal primer function in DNA replication.  相似文献   

4.
A phi 29 DNA fragment containing genes 10 and 11, coding for the connector protein and the lower collar protein, respectively, has been cloned in the pBR322 derivative plasmid pKC30 under the control of the PL promoter of phage lambda. Two polypeptides with the electrophoretic mobility of proteins p10 and p11 were labelled with 35S-methionine after heat induction. The proteins were characterized as p10 and p11 by radioimmunoassay and they represented about 10% and 7%, respectively, of the total E. coli protein after 4 hours of induction. These proteins represent less than 1% of the B. subtilis protein in phi 29-infected cells. Protein p10 has been highly purified from the E. coli cells carrying the recombinant plasmid. Antibodies raised against the purified protein p10 reacted with the connector protein produced in phi 29-infected B. subtilis.  相似文献   

5.
Fifty-four suppressible mutants of bacteriophage phi29 have been isolated with a variety of mutagens and assigned to eight complementation groups. Viral-specific protein synthesis in UV light-irradiated, nonsuppressing Bacillus subtilis 60084 was analyzed with exponential acrylamide gels. Four additional phi29 proteins which were undetected on ordinary acrylamide gels are reported in this paper. Five phage phi29 proteins have been unambiguously assigned to specific cistrons. Two cistrons had pleiotropic effects on viral protein synthesis. Mutants in cistrons I or II were unable to synthesize DNA in nonsuppressing bacteria. Mutants in cistron I were unable to attach viral chromosomes to the host cell membrane, and the protein responsible for this function has been identified. The other viral protein playing a role in phage phi29 DNA synthesis is also identified and assigned to cistron II. Mutants in cistron II can attach viral chromosomes to membrane, but cannot synthesize DNA in nonsuppressing bacteria.  相似文献   

6.
A Zaballos  M Salas 《Nucleic acids research》1989,17(24):10353-10366
Deletion mutants at the amino- and carboxyl-ends of the phi 29 terminal protein, as well as internal deletion and substitution mutants, whose ability to prime the initiation of phi 29 DNA replication was affected to different extent, have been assayed for their capacity to interact with DNA or with the phi 29 DNA polymerase. One DNA binding domain at the amino end of the terminal protein has been mapped. Two regions involved in the binding to the DNA polymerase, an internal region near the amino-terminus and a carboxyl-terminal one, have been also identified. Interaction with both DNA and phi 29 DNA polymerase are required to led to the formation of terminal protein-dAMP initiation complex to start phi 29 DNA replication.  相似文献   

7.
To study the requirements for the in vitro formation of the protein p3-dAMP complex, the first step in phi29 DNA replication, extracts from B. subtilis infected with phi29 mutants in genes 2, 3, 5, 6 and 17, involved in DNA synthesis, have been used. The formation of the initiation complex is completely dependent on the presence of a functional gene 2 product, in addition to protein p3 and phi29 DNA-protein p3 as template. ATP is also required, although it can be replaced by other nucleotides. The products of genes 5, 6 and 17 do not seem to be needed in the formation of the initiation complex. Inhibitors of the host DNA polymerase III, DNA gyrase or RNA polymerase had no effect on the formation of the protein p3-dAMP complex, suggesting that these proteins are not involved in the initiation of phi29 DNA replication. ddATP or aphidicolin, inhibitors of DNA chain elongation, had also no effect on the formation of the initiation complex.  相似文献   

8.
9.
Choleraphage phi 149 differentiates the two biotypes, classical and el tor, of Vibrio cholerae. This phage cannot replicate in V. cholerae biotype el tor cells because the concatemeric DNA intermediates produced are unstable and cannot be chased to mature phage DNA. A V. cholerae biotype el tor gene coding for a 14,000-Da inner membrane protein which destabilizes the concatemeric DNA intermediates by hindering their binding to the cell membrane has been identified. Presumably, a 22,000-Da V. cholerae biotype el tor protein might also have a role in conferring phage phi 149 resistance to cells belonging to the biotype el tor. A nucleotide sequence homologous to the 1.2-kb V. cholerae biotype el tor DNA coding for both the 14,000- and 22,000-Da proteins is present in all strains of classical vibrios but is not transcribed. The nucleotide sequence of the gene coding for the 14,000-Da protein has been determined.  相似文献   

10.
M J Otero  J M Lázaro  M Salas 《Gene》1990,95(1):25-30
Deletions corresponding to the first 5 or 13 amino acids (aa), not counting the initial Met, have been introduced into the N terminus of the phage phi 29 protein p6. The activity of such proteins in the in vitro phi 29 DNA replication system, their capacity to interact with the phi 29 DNA ends, and their interference with the wild type (wt) protein p6 activity have been studied. The initiation activity of protein p6 decreased considerably when 5 as were deleted and was undetectable when 13 aa were removed. The mutant proteins were unable to specifically interact with the phi 29 DNA ends. These results indicate the need of an intact N terminus for the activity of protein p6. However, such N-truncated proteins inhibited both the specific binding of the wt protein p6 to the phi 29 DNA ends and its activity in phi 29 DNA replication.  相似文献   

11.
A novel DNA polymerase induced by Bacillus subtilis phage phi 29.   总被引:4,自引:2,他引:2       下载免费PDF全文
K Watabe  J Ito 《Nucleic acids research》1983,11(23):8333-8342
A novel DNA polymerase induced by Bacillus subtilis bacteriophage phi 29 has been identified. This polymerase can be separated from host DNA polymerase, by fractionation of extracts prepared from phage infected cells, using phosphocellulose chromatography. The isolated polymerase prefers poly(dA)oligo(dT) as template. The DNA polymerase isolated from the cells infected with a gene 2 temperature sensitive mutant (ts2) showed greater heat-lability than that induced by wild type phi 29. The ts2 DNA polymerase was also thermolabile for its activity in the formation of a covalent complex between phi 29 terminal protein and dAMP, the initiation step of phi 29 DNA replication. These findings indicate that gene 2 is the structural gene for a phi 29 DNA polymerase required for the complex formation step of DNA initiation.  相似文献   

12.
Series of deletions corresponding to the carboxyl end of the phage phi 29 protein p6 have been constructed and their activity in the initiation of phi 29 DNA replication and their capacity to interact with the phi 29 DNA ends have been studied. Determination of the activity of the deletion mutants in phi 29 DNA replication indicated the dispensability of the 14 carboxy-terminal amino acids of the protein. The activity of protein p6 decreased with deletions from 23 to 39 amino acids and was undetectable when 44 amino acids were removed. A similar behaviour was obtained when the interaction of the mutant proteins with the phi 29 DNA ends was analyzed. These results indicate that the stimulation of phi 29 DNA replication by protein p6 requires a specific binding to the phi 29 DNA ends.  相似文献   

13.
Symmetrical transcription in bacteriophage phi 29 DNA   总被引:1,自引:0,他引:1  
  相似文献   

14.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   

15.
Three classes of particles have been identified in restrictive phi 29 suppressor-sensitive (sus) mutant infections of Bacillus subtilis, including DNA-containing heads or phage, prohead, and empty heads. Pulse-chase labeling experiments indicate that the prohead, the first particle assembled in 14-infected cells, is converted to DNA-filled heads and phi 29. In addition to the proteins Hd, P10, and F found in mature phi 29, the prohead contains a "core" protein P7 that exits as the prohead matures and appears to recycle during subsequent rounds of prohead assembly. Prohead-like structures accumulate in UV-irradiated cells and are present in restrictive infections with sus mutants of cistrons 9 and 16. Empty heads are observed only when infection results in the formation of DNA-containing particles; this and other evidence indicates that the empty heads are probably not true intermediates. Phage phi 29 assembly apparently occurs by a single pathway in which neck and tail components interact to stabilize the completed DNA-containing head.  相似文献   

16.
17.
Cell-free extracts prepared from phi 29 and M2-infected Bacillus subtilis cells catalyse the formation of complexes between terminal protein and [alpha-32P]-dAMP in the presence of [alpha-32P]-dATP, MgCl2, ATP, and phage DNA with terminal protein covalently linked at both the 5'ends. The complex formation does not take place when proteinase K-treated DNA is added or when uninfected extract is used. The phi 29 complex thus formed is smaller than the M2 complex, primarily due to the different molecular weights of the respective terminal proteins. Extracts prepared from cells infected with suppressor-sensitive mutants of genes 2 or 3 of phi 29 or genes G or E of M2 do not support complex formation. When the pair of extracts of phi 29 or M2-infected cells are mixed, however, formation of the complex takes place as a result of in vitro complementation. These results indicate that the complex formation observed in vitro reflects in vivo initiation of phage DNA replication. The product of gene 2 of phi 29 may be the enzyme that catalyses formation of the complex.  相似文献   

18.
W J Meijer  J A Horcajadas  M Salas 《Microbiology and molecular biology reviews》2001,65(2):261-87 ; second page, table of contents
  相似文献   

19.
Protein p6 of Bacillus subtilis phage phi 29 binds specifically to the ends of the viral DNA that contain the replication origins, giving rise to a nucleoprotein structure. DNA regions recognized by protein p6 have been mapped by deletion analysis and DNase I footprinting. Main protein p6-recognition signals have been located between nucleotides 62 and 125 at the right phi 29 DNA end and between nucleotides 46 and 68 at the left end. In addition, recognition signals are also present at other sites within 200-300 bp at each phi 29 DNA end. Protein p6 does not seem to recognize a specific sequence in the DNA, but rather a structural feature, which could be bendability. The formation of the protein p6-DNA nucleoprotein complex is likely to be the structural basis for the protein p6 activity in the initiation of replication.  相似文献   

20.
Phage phi29 is a virulent phage of Bacillus subtilis with no known lysogenic cycle. Indeed, lysis occurs rapidly following infection of vegetative cells. Here, we show that phi29 possesses a powerful strategy that enables it to adapt its infection strategy to the physiological conditions of the infected host to optimize its survival and proliferation. Thus, the lytic cycle is suppressed when the infected cell has initiated the process of sporulation and the infecting phage genome is directed into the highly resistant spore to remain dormant until germination of the spore. We have also identified two host-encoded factors that are key players in this adaptive infection strategy. We present evidence that chromosome segregation protein Spo0J is involved in spore entrapment of the infected phi29 genome. In addition, we demonstrate that Spo0A, the master regulator for initiation of sporulation, suppresses phi29 development by repressing the main early phi29 promoters via different and novel mechanisms and also by preventing activation of the single late phi29 promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号