首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
ARH is required for normal endocytosis of the low density lipoprotein (LDL) receptor in liver and mutations within this gene cause autosomal recessive hypercholesterolemia in humans. xARH is a localized maternal RNA in Xenopus with an unknown function in oogenesis and embryogenesis. Like ARH, xARH contains a highly conserved phosphotyrosine binding domain and a clathrin box. To address the function of xARH, we examined its expression pattern in development and used pull-down experiments to assess interactions between xARH, lipoprotein receptors and proteins in embryo extracts. xARH was detected concentrated at the cell periphery as well as in the perinuclear region of oocytes and embryos. In pull-down experiments, the xARH phosphotyrosine binding domain interacted with the LDL and vitellogenin receptors found in Xenopus oocytes and embryos. Mutations within the receptor internalization signal specifically abolished this interaction. The xARH C-terminal region pulled-down several proteins from embryo extracts including alpha- and beta-adaptins, subunits of the AP-2 endocytic complex. Mutations within either of the two Dvarphi(F/W) motifs found in xARH abolished binding to alpha- and beta-adaptins. Expression of a dominant negative mutant of xARH missing the clathrin box and one functional Dvarphi(F/W) motif severely inhibited endocytosis of vitellogenin in cultured oocytes. The data indicate that xARH acts as an adaptor protein linking LDL and vitellogenin receptors directly with the AP-2 complex. In oocytes, we propose that xARH mediates the uptake of lipoproteins from the blood for storage in endosomes and later use in the embryo. Our findings point to an evolutionarily conserved function for ARH in lipoprotein uptake.  相似文献   

2.
RNAs that localize to the vegetal cortex of Xenopus oocytes are involved in early embryonic patterning and cell fate specification. Two mechanistically distinct pathways lead to RNA enrichment at the vegetal cortex: the early and the late. While several candidate proteins that seem to operate in the late localization pathway have been identified, proteins involved in the early pathway remain to be identified. In this study, we report on the isolation of a novel vegetally localized RNA in Xenopus oocytes that makes use of the early pathway and encodes a protein with a conserved but functionally uncharacterized NIF-motif. The localization signal of XNIF was mapped to a 300-nucleotide region in the 5'-UTR, which is able to mediate both accumulation to the mitochondrial cloud in stage I oocytes, as well as vegetal transport in later stage oocytes. The XNIF-LE contains 16 copies of the previously defined CAC-containing signal motifs for RNA localization. A critical number of such repeats seems to be required for accumulation in the mitochondrial cloud along the early pathway, but additional repeats seem to be required for localization along the late pathway. Cross-linking experiments identify two novel proteins of 62 and 64 kDa that interact with the XNIF-LE but not with the Vg1-LE that operates in the late pathway. Conversely, at least two of the previously identified VgRBPs, Vg1RBP1 and Prrp, also bind to the XNIF-LE. Thus, overlapping, but not identical, protein machineries mediate vegetal RNA localization along early and late pathways in Xenopus oocytes.  相似文献   

3.
Zhao WM  Jiang C  Kroll TT  Huber PW 《The EMBO journal》2001,20(9):2315-2325
A 340 nucleotide element within the 3' untranslated region of Vg1 mRNA determines its localization to the vegetal cortex of Xenopus oocytes. To identify protein factors that bind to this region, we screened a cDNA expression library with an RNA probe containing this sequence. Five independent isolates encoded a protein (designated Prrp for proline-rich RNA binding protein) having two RNP domains followed by multiple polyproline segments. Prrp and Vg1 mRNAs are co-localized to the vegetal cortex of stage IV oocytes, substantiating an interaction between the two in vivo. Prrp also associates with VegT mRNA, which like Vg1 mRNA uses the late localization pathway, but not with Xcat-2 or Xwnt-11 mRNAs, which use the early pathway. The proline-rich domain of Prrp interacts with profilin, a protein that promotes actin polymerization. Prrp can also associate with the EVH1 domain of Mena, another microfilament-associated protein. Since the anchoring of Vg1 mRNA to the vegetal cortex is actin dependent, one function of Prrp may be to facilitate local actin polymerization, representing a novel function for an RNA binding protein.  相似文献   

4.
The 3′ untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.  相似文献   

5.
Z Elisha  L Havin  I Ringel    J K Yisraeli 《The EMBO journal》1995,14(20):5109-5114
Localized RNAs are found in a variety of somatic and developing cell types. In many cases, microtubules have been implicated as playing a role in facilitating transport of these RNAs. Here we report that Vg1 RNA, which is localized to the vegetal cortex of Xenopus laevis oocytes, is associated with microtubules in vivo. Because of the ubiquitous nature of tubulin, the association of specific RNAs with microtubules is likely to involve factors that recognize both RNA and microtubules. Vg1 RNA binding protein (Vg1 RBP), previously shown to bind with high affinity to the vegetal localization site in Vg1 RNA, appears to function in this capacity. Vg1 RBP is associated with microtubules: it is enriched in microtubule extracts of oocytes and is also co-precipitated by heterologous, polymerized tubulin. Furthermore, Vg1 RBP binding activity is required for the specific association of Vg1 RNA to microtubules in vitro. These data suggest a general model for how specific RNAs can be localized to particular sites via common cytoskeletal elements.  相似文献   

6.
We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA.  相似文献   

7.
8.
In zebrafish, primordial germ cells (PGCs) are determined by a specialized maternal cytoplasm, the germ plasm, which forms at the distal ends of the cleavage furrows in 4-cell embryos. The germ plasm includes maternal mRNAs from the germline-specific genes such as vasa and nanos1, and vegetally localized dazl RNA is also incorporated into the germ plasm. However, little is known about the distributions and assembly mechanisms of germ plasm components, especially during oogenesis. Here we report that the germ plasm RNAs vasa, nanos1, and dazl co-localize with the mitochondrial cloud (MC) and are transported to the vegetal cortex during early oogenesis. We found that a mitochondrial cloud localization element (MCLE) previously identified in the 3' untranslated region (3'UTR) of Xenopus Xcat2 gene can direct RNA localization to the vegetal cortex via the MC in zebrafish oocytes. In addition, the RNA-binding protein Hermes is a component of the MC in zebrafish oocytes, as is the case in Xenopus. Moreover, we provide evidence that the dazl 3'UTR possesses at least three types of cis-acting elements that direct multiple steps in the localization process: MC localization, anchorage at the vegetal cortex, and localization at the cleavage furrows. Taken together, the data show that the MC functions as a conserved feature that participates in transport of the germ plasm RNAs in Xenopus and zebrafish oocytes. Furthermore, we propose that the germ plasm components are assembled in a stepwise and spatiotemporally-regulated manner during oogenesis and early embryogenesis in zebrafish.  相似文献   

9.
10.
Using a large-scale in situ hybridization screening, we found that the mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) was localized to the germ plasm of Xenopus laevis. The mRNA is maternally transcribed in oocytes and, during maturation, transported to the vegetal germ plasm through the late pathway where VegT and Vg1 mRNAs are transported. In the 3'-untranslated region (UTR) of the mRNA, there are clusters of E2 and VM1 localization motifs that were reported to exist in the mRNAs classified as the late pathway group. With in situ hybridization to the sections of embryos, the signal could be detected in the cytoplasm of migrating presumptive primordial germ cells (pPGCs) until stage 35. At stage 40, when the cells cease to migrate and reach the dorsal mesentery, the signal disappeared. A possible role of XGRIP2 in pPGCs of Xenopus will be discussed.  相似文献   

11.
The peripheral region of ascidian oocytes and zygotes contains five determinants for morphogenesis and differentiation of the embryo. The determinant for the 24 primary muscle cells of the tadpole, macho1, is one of several cortical mRNAs localized in a gradient along the animal-vegetal axis in the oocyte. After fertilization these mRNAs, together with cortical endoplasmic reticulum (cER) and a subcortical mitochondria-rich domain (myoplasm), relocate in two major reorganization phases forming the posterior plasm (postplasm) of the zygote. At the 8-cell stage cortical mRNAs concentrate in a macroscopic cortical structure called the centrosome-attracting body (CAB), forming a characteristic posterior end mark (PEM) in the two posterior vegetal blastomeres. We propose to call the numerous mRNAs showing this particular cortical localization in the posterior region of the embryo postplasmic/PEM RNAs and suggest a nomemclature. We do not know how postplasmic/PEM RNAs reach their polarized distribution in the oocyte cortex but at least PEM1 and macho1 (and probably others) bind to the network of cER retained in isolated cortical fragments. We propose that after fertilization, these postplasmic/PEM mRNAs move in the zygote cortex together with the cER network (cER/mRNA domain) via microfilament- and microtubule-driven translocations. The cER/mRNA domain is localized posteriorly at the time of first cleavage and distributed equally between the first two blastomeres. After the third cleavage, the cER/mRNA domain and dense particles compact to form the CAB in posterior vegetal blastomeres of the 8-cell stage. We discuss the identity of postplasmic/PEM RNAs, how they localize, anchor, relocate and may be translated. We also examine their roles in unequal cleavage and as a source of posterior morphogenetic and differentiation factors.  相似文献   

12.
Vg 1 RNA becomes localized at the vegetal cortex of Xenopus oocytes in a process requiring both intact microtubules (MT) and microfilaments. This localization occurs during a narrow window of oogenesis, when a number of RNA-binding proteins associate with the RNA. xVICKZ3 (Vg1 RBP/Vera), the first Vg1 RNA-binding protein identified, helps mediate the association of Vg1 RNA with MT and is co-localized with the RNA at the vegetal cortex. Given the complexity of the Vg1 RNA ribonucleoprotein (RNP) complex, it has remained unclear how xVICKZ3 functions in Vg1 RNA localization. Here, we have taken a closer look at the process of xVICKZ3 localization in oocytes. We have made use of deletion constructs to perform a structure-function analysis of xVICKZ3. The ability of xVICKZ3-GFP constructs to vegetally localize correlates with their association to MT but not with Vg1 RNA-binding ability. We find that when the ability of xVICKZ3 to bind Vg1 RNA is inhibited by the injection of a construct that dominantly inhibits RNA binding, both the construct and Vg1 RNA still localize, apparently through their continued association with a Vg1 RNA-containing RNP complex. These results emphasize the importance of protein-protein interactions in both xVICKZ3 and Vg1 RNA localization.  相似文献   

13.
Summary In oviparous animals large amounts of yolk proteins of extraovarian origin are accumulated by developing oocytes during vitellogenesis. The yolk protein precursors, the vitellogenins (VTG), are transported into the oocytes by receptor-mediated endocytosis. In oocytes of the polychaetous annelid, Nereis virens, the receptor protein for VTG was visualized by ligand blotting studies as a protein with an apparent molecular mass of 190 kDa under non-reducing conditions. Anti-Locusta VTG receptor antibodies recognize the Nereis VTG receptor protein. The Nereis VTG receptor protein binds Locusta and Schistocerca VTG; the VTG receptor proteins of both locust species bind the Nereis vitellin. These results indicate the conservation of structural elements important for internalization of VTG.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propane-sulphonic acid - HBS HEPES-buffered saline - PAP peroxidase-anti-peroxidase - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - TRIS, TBS TRIS-buffered saline - VT vitellin - VTG vitellogenin  相似文献   

14.
The endocytic protein Numb3 was found to bind to the cytosolic tail of the leukocyte adhesion receptor P-selectin. The N-terminal phosphotyrosine-binding (PTB) domain of Numb3 is responsible for this activity. An alanine scan revealed the FTNAAFD sequence as recognition region in P-selectin. Structural modeling of the interaction between the Numb PTB domain and the P-selectin tail suggests that both phenylalanines within the recognition sequence fit into hydrophobic cavities of the PTB surface. Their exchange for alanine gave Numb-negative mutants detaining the inhibition of P-selectin endocytosis by Numb PTB overexpression. Cells stable expressing P-selectins internalized the negative mutants markedly slower than the wild type. Consistent with other reports on the phosphorylation of Numb, we found that only the dephospho-Numb is able to bind P-selectin. Our observations demonstrate that Numb3 is an endocytic receptor for P-selectin and may be responsible for the rapid internalization of P-selectin when endothelial activation ends.  相似文献   

15.
Two pathways operate during Xenopus oogenesis to localize a small number of RNAs to the vegetal cortex. Correct localization of these RNAs is essential to normal development as the proteins they encode are involved in specifying cell type and in patterning the early embryo. Binding these RNAs to the vegetal cortex and thus preserving their localized condition is a critical step, although little is known about how this is achieved. In this study, we have used a biochemical approach to examine the anchoring step. Xlsirts, an abundant localized RNA (locRNA), was selectively enriched in a detergent-insoluble fraction (DIF) prepared from oocytes that had completed the RNA localization process. These putative RNA-anchoring complexes were analyzed by density gradient centrifugation and in RNA-protein binding assays. Cortical Xlsirts and other localized RNAs are specifically found in the heavy region of sucrose gradients and in the pellet, quite different from other cellular RNPs. Four proteins were identified by UV-crosslinking that bound the Xlsirts localization signal in the cortex, but not in the soluble fraction. These are likely members of the anchoring complex and appear to include vera, a characterized Vg1 RNA binding protein. Vera was found to co-sediment with other locRNAs found in the vegetal cortex, suggesting that it is a common component of locRNPs. Finally, we found that locRNPs extracted into the soluble fraction had the same buoyant density as typical ooplasmic RNPs. We propose that locRNAs are organized and anchored in the cortex as typical RNPs.  相似文献   

16.
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.  相似文献   

17.
Proline rich RNA-binding protein (Prrp), which associates with mRNAs that employ the late pathway for localization in Xenopus oocytes, was used as bait in a yeast two-hybrid screen of an expression library. Several independent clones were recovered that correspond to a paralog of 40LoVe, a factor required for proper localization of Vg1 mRNA to the vegetal cortex. 40LoVe is present in at least three alternatively spliced isoforms; however, only one, corresponding to the variant identified in the two-hybrid screen, can be crosslinked to Vg1 mRNA. In vitro binding assays revealed that 40LoVe has high affinity for RNA, but exhibits little binding specificity on its own. Nonetheless, it was only found associated with localized mRNAs in oocytes. 40LoVe also interacts directly with VgRBP71 and VgRBP60/hnRNP I; it is the latter factor that likely determines the binding specificity of 40LoVe. Initially, 40LoVe binds to Vg1 mRNA in the nucleus and remains with the RNA in the cytoplasm. Immunohistochemical staining of oocytes shows that the protein is distributed between the nucleus and cytoplasm, consistent with nucleocytoplasmic shuttling activity. 40LoVe is excluded from the mitochondrial cloud, which is used by RNAs that localize through the early (METRO) pathway in stage I oocytes; nonetheless, it is associated with at least some early pathway RNAs during later stages of oogenesis. A phylogenetic analysis of 2×RBD hnRNP proteins combined with other experimental evidence suggests that 40LoVe is a distant homolog of Drosophila Squid.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号