首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arjun Singh  T. R. Manney 《Genetics》1974,77(4):661-670
A suppressor SUP101 of alleles trp5-67 and trp5-18 of the trp5 locus of Saccharomyces cerevisiae is described. The two suppressible mutations have been previously classified as missense. The suppression does not result from a physiological bypass of the tryptophan synthetase-catalyzed reaction, since the suppression is allele-specific. IU alleles trp5-70, tryp5-95, and trp5-102; IA alleles trp5-81, trp5-101, and trp5-103; and the ochre alleles trp5-33 and trp5-48 are not suppressed by SUP101. SUP101 does not suppress ochre alleles ade2-1, his5-2, arg4-17, lys1-1, amber alleles trp1-1, tyr7-1, or unclassified alleles at a number of other loci. These results indicate SUP101 is a missense suppressor. Growth on tryptophanless media is dependent upon gene dosage of both the suppressor and the suppressible alleles. Only the diploids homozygous both for the suppressor and suppressible alleles produce growth equivalent to growth of the haploids bearing a suppressible allele and the suppressor. Suppressor-bearing strains grow poorly even on tryptophan-supplemented media. In more than 100 asci analyzed partial growth inhibition on the complete medium always segregated with the suppressor.  相似文献   

2.
Summary No suppressible alleles have been found at the his1 locus of Saccharomyces cerevisiae. Seventeen noncomplementing alleles have been tested against the strong ochre suppressor SUP2. These alleles, plus an additional 34 complementing alleles, were previously tested against a weaker suppressor SUP11. These results, which are in marked contrast to experience with other yeast loci where suppressible alleles are frequent, may be explained if the his1 product is transcribed from a polycistronic message so that nonsense mutations lead to loss of a second nonsupplementable function, or if the his1 protein serves as an essential subunit for an unknown enzyme complex.  相似文献   

3.
The purpose of this study was to characterize two mutator stocks of yeast which were induced and selected on the basis of high spontaneous reversion rates of the suppressible "ochre" nonsense allele lys1-1. In the mutator stock VA-3, a single mutation, designated mut1-1, is responsible for the increase in the reversion rate of the ochre alleles lys1-1 and arg4-17. In stock VA-105, there are two separate mutator mutations. Tetrad analysis data showed these two loci are loosely linked. Based on complementation data, one of these mutations is at the same locus as mut1-1 and designated mut1-2. The second mutator of stock VA-105 was designated mut2-1. All three mutators are recessive. Both mut1-1 and mut1-2 give a high mutation rate for ochre nonsense suppressor (SUP) loci, but not for the ochre nonsense alleles. On the contrary, the mutation rates of the ochre alleles are greatly reduced. With the mutant mut2-1 there were mutations at both the lys1-1 site and its suppressors; mut2-1 is as effective as mut1-2 but not as effective as mut1-1 in inducing reversions of a missense mutant, his1-7. Neither mut1-1, mut1-2 nor mut2-1 were effective in inducing reversions of a putative frameshift mutation, hom3-10, or in inducing forward mutations to canavanine resistance.  相似文献   

4.
Chao AT  Dierick HA  Addy TM  Bejsovec A 《Genetics》2003,165(2):601-612
In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens.  相似文献   

5.
B. Fane  J. King 《Genetics》1991,127(2):263-277
Within the amino acid sequences of polypeptide chains little is known of the distribution of sites and sequences critical for directing chain folding and assembly. Temperature-sensitive folding (tsf) mutations identifying such sites have been previously isolated and characterized in gene 9 of phage P22 encoding the tailspike endorhamnosidase. We report here the isolation of a set of second-site conformational suppressors which alleviate the defect in such folding mutants. The suppressors were selected for their ability to correct the defects of missense tailspike polypeptide chains, generated by growth of gene 9 amber mutants on Salmonella host strains inserting either tyrosine, serine, glutamine or leucine at the nonsense codons. Second-site suppressors were recovered for 13 of 22 starting sites. The suppressors of defects at six sites mapped within gene 9. (Suppressors for seven other sites were extragenic and distant from gene 9.) The missense polypeptide chains generated from all six suppressible sites displayed ts phenotypes. Temperature-sensitive alleles were isolated at these amber sites by pseudoreversion. The intragenic suppressors restored growth at the restrictive temperature of these presumptive tsf alleles. Characterization of protein maturation in cells infected with mutant phages carrying the intragenic suppressors indicates that the suppression is acting at the level of polypeptide chain folding and assembly.  相似文献   

6.
Korch CT  Snow R 《Genetics》1973,74(2):287-305
A number of his1 mutants were tested for suppressibility, for reversion by EMS, ICR-170, and nitrous acid, for their allelic complementation response, and for their temperature sensitivity and osmotic remediability. None of 52 mutants tested was suppressible by a known ochre suppressor. This is a very surprising result compared with other studies of suppressibility in yeast and suggests that another function essential to the cell is associated with the his1 gene product, the polarity effect of a nonsense mutation destroying the activity of the his1 enzyme and this second function.Sixty-four his1 alleles were ordered by allelic mapping methods utilizing gamma rays, X-rays, and MMS. The three maps agree well in placement of alleles and have been oriented on chromosome V of yeast with respect to the centromere. The 18 noncomplementing alleles are localized in the distal half of the gene, whereas the complementing alleles are distributed more or less evenly. Mutations which revert to feedback resistance map in the proximal end. Also at this end are mutations having a very high X-ray or MMS induced homoallelic reversion rate. This suggests that a number of missense mutations can occur in this region which result in innocuous amino acid substitutions in the enzyme. One X-ray map unit is estimated to correspond to about 131 base pairs or 43 amino acids, in agreement with results for the cytochrome-c protein obtained by Parker and Sherman (1969).  相似文献   

7.
One hundred and thirty-three spontaneous and induced mutants of the met15 locus in Saccharomyces cerevisiae were characterized with respect to temperature sensitivity, osmotic remediability, interallelic complementation, and suppressibility by amber and ochre suppressors. Forty mutants are osmotic remedial; 17 of these, and no others, are also temperature-sensitive. Seven of 133 mutations are suppressible by an amber suppressor and 11 are suppressible by an ochre suppressor. Seventy percent of the mutants exhibited interallelic complementation, suggesting that the functional gene product of the met15 gene is a multimeric protein. Relative map positions of 30 met15 were estimated from the frequencies of X-ray-induced mitotic reversion of various heteroallelic diploids. All complementing nonsense mutations are located near one end of the gene in contrast to other nonsense mutations which span most of the gene, thus relating the direction of translation of the mRNA with respect to the fine-structure map. Recombination studies indicated that two of 30 mutants contained deletions of the entire met15 locus.—It was established that a variety of mutational types, including missense, nonsense, and deletions, are recovered with this unique system in which both forward and reverse mutations can be selected on the basis of methyl mercury resistance and methionine requirement of the met15 mutants.  相似文献   

8.
We present a mutational analysis of the iduronate-2-sulfatase (IDS) gene of 36 Russian patients with Hunter syndrome. Among 29 mutant alleles, there were 19 missense mutations, 1 nonsense mutation, 6 mutations affecting splice sites, and 3 major structural alterations resulting in deletions. Of the 25 different mutations, 15 are novel and unique. Most of the missense mutations result in intermediate or severe phenotypes. Received: 1 June 1998 / Accepted: 27 July 1998  相似文献   

9.
The Suppression of AD-3B Mutants by Supersuppressors in NEUROSPORA CRASSA   总被引:1,自引:0,他引:1  
The action of eight suppersuppressors has been tested on 76 ad-3B mutants which were induced by base-pair transition mutagens. Thirteen mutants were found to be suppressible by at least one ssu gene. Most of the suppressible mutants were found to belong to a class in which one would expect to find nonsense mutants (polar complementing or noncomplementing classes, with AT at the mutant site). However, suppression was observed in other classes, including those containing presumed missense mutants. The specificity of the suppressors and the criteria for molecular classification of the mutants are discussed.  相似文献   

10.
11.
An allelic series of mutations is an extremely valuable genetic resource for understanding gene function. Here we describe eight mutant alleles at the Steel (Sl) locus of mice that were induced with N-ethyl-N-nitrosourea (ENU). The product of the Sl locus is Kit ligand (or Kitl; also known as mast cell growth factor, stem cell factor, and Steel factor), which is a member of the helical cytokine superfamily and is the ligand for the Kit receptor tyrosine kinase. Seven of the eight ENU-induced Kitl(Sl) alleles, of which five cause missense mutations, one causes a nonsense mutation and exon skipping, and one affects a splice site, were found to contain point mutations in Kitl. Interestingly, each of the five missense mutations affects residues that are within, or very near, conserved alpha-helical domains of Kitl. These ENU-induced mutants should provide important information on structural requirements for function of Kitl and other helical cytokines.  相似文献   

12.
Chattoo BB  Palmer E  Ono B  Sherman F 《Genetics》1979,93(1):67-79
A total of 358 lys2 mutants of Saccharomyces cerevisiae have been characterized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppressor; an omnipotent suppressor SUP46; and a frameshift suppressor SUF1–1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to require certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require suppressors that were expressed at high levels. Many of the mutants suppressible by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phenotypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phenotypic misreading.  相似文献   

13.
LIN-1 is an ETS domain protein. A receptor tyrosine kinase/Ras/mitogen-activated protein kinase signaling pathway regulates LIN-1 in the P6.p cell to induce the primary vulval cell fate during Caenorhabditis elegans development. We identified 23 lin-1 loss-of-function mutations by conducting several genetic screens. We characterized the molecular lesions in these lin-1 alleles and in several previously identified lin-1 alleles. Nine missense mutations and 10 nonsense mutations were identified. All of these lin-1 missense mutations affect highly conserved residues in the ETS domain. These missense mutations can be arranged in an allelic series; the strongest mutations eliminate most or all lin-1 functions, and the weakest mutation partially reduces lin-1 function. An electrophoretic mobility shift assay was used to demonstrate that purified LIN-1 protein has sequence-specific DNA-binding activity that required the core sequence GGAA. LIN-1 mutant proteins containing the missense substitutions had dramatically reduced DNA binding. These experiments identify eight highly conserved residues of the ETS domain that are necessary for DNA binding. The identification of multiple mutations that reduce the function of lin-1 as an inhibitor of the primary vulval cell fate and also reduce DNA binding suggest that DNA binding is essential for LIN-1 function in an animal.  相似文献   

14.
Summary In yeast the dominant super-suppressorS 5 has a distinct expression in heterozygotes depending on the particular combination of alleles at thead 1 orad 2 loci. If thead 1 combination is represented by two suppressible alleles, the phenotype of diploid is wild. If thead 1 combination consists of a suppressible and a non-suppressible allele the phenotype of the diploid is partially mutant. Such a difference in the manifestation of suppressor depending on the combination of alleles is more pronounced in the case ofad 2 mutations. In the case when bothad 2 alleles are suppressible, the diploid is prototrophic, but when only one allele is suppressible, the diploid is an adenineless auxotroph as a rule.This type ofS 5-effect gave us the possibility to study interallelic complementation atad 2 locus in presence of the super-suppressor. It was shown that some combinations of noncomplementing alleles do complement as a result of suppression.Comparison of the two complementation maps with and without suppressor is made for thead 2 locus. The mechanisms of the phenomena and of super-suppression are discussed.  相似文献   

15.
16.
Using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, ethyl methanesulphonate or 4-nitroquinoline-1-oxide mutagenesis and an enrichment method for the isolation of auxotrophs, 25 mutants with defects in the adA locus were obtained after screening 41,376 colonies. One of these, adA24, did not complement with any of the other adA mutants, had a very high reversion rate and had some other properties which usually characterize strains carrying nonsense mutations. All revertants of adA24 carried dominant suppressor mutations. A group of adA24 suppressors was tested for allele and locus specificity. They were found to suppress only some adA alleles, and at the same time, some mutations in the methG, methH, argB and proA loci. It is proposed that the allele specific and locus non-specific adenine suppressors are suppressors of nonsense mutations.  相似文献   

17.
18.
19.
Spectrum of mutations in alpha-mannosidosis.   总被引:1,自引:0,他引:1       下载免费PDF全文
alpha-Mannosidosis is an autosomal recessive disorder caused by deficiency of lysosomal alpha-mannosidase (LAMAN). The resulting intracellular accumulation of mannose-containing oligosaccharides leads to mental retardation, hearing impairment, skeletal changes, and immunodeficiency. Recently, we reported the first alpha-mannosidosis-causing mutation affecting two Palestinian siblings. In the present study 21 novel mutations and four polymorphic amino acid positions were identified by the screening of 43 patients, from 39 families, mainly of European origin. Disease-causing mutations were identified in 72% of the alleles and included eight splicing, six missense, and three nonsense mutations, as well as two small insertions and two small deletions. In addition, Southern blot analysis indicated rearrangements in some alleles. Most mutations were private or occurred in two or three families, except for a missense mutation resulting in an R750W substitution. This mutation was found in 13 patients, from different European countries, and accounted for 21% of the disease alleles. Although there were clinical variations among the patients, no significant LAMAN activity could be detected in any of the fibroblast cultures. In addition, no correlation between the types of mutations and the clinical manifestations was evident.  相似文献   

20.
Inductions of reversions of nonsense, missense and frameshift-type mutations were investigated in a diploid cell population of Saccharomyces cerevisiae during commitment to meiosis, by using the medium-transfer technique from sporulation medium to vegetative medium. The yields of spontaneous reverse mutations obtained from the cells that were committed to different stages during meiosis were rather constant irrespective of the alleles tested, although the yields of both intergenic and intragenic recombinations markedly increased.The susceptibilities to UV-induced reverse mutations examined during commitment to meiosis were not changed appreciably. It is concluded that induction of base-change-type mutations in meiosis is not essentially different from that in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号