首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The gas exchange of barley ears and awns was measured in the field using a gas analysis system and a diffusion porometer. Awn stomatal resistance decreased with increasing irradiance but to a smaller extent than leaf stomatal resistance. Measurements on ears immediately before and after successively removing awns showed that awn transpiration and photosynthesis were proportional to awn area and that awns accounted for 73% of transpiration by the ear. Although the maximum rates of photosynthesis of which awns were capable declined with age, awns accounted for 80–115% of the net CO2 uptake of complete ears because the ears-less-awns could respire more CO2 than they absorbed. Ear photosynthesis accounted for 52% of the weekly increment in ear dry weight after ear emergence, but 5 weeks later photosynthesis by the ear balanced respiration. Overall photosynthesis by the ear accounted for 35 % of its final weight. Differences in the light response curves of leaves and ears can be fully accounted for by the different relationships between stomatal resistance and irradiance of the two organs.  相似文献   

2.
By investigating the R D-C a (dark respiration rate-atmospheric CO2 concentration) and P N (net photosynthetic rate)-C a curves of bamboo (Fargesia denudata) and poplar (Populus cathayanna), we found that: (1) the minimal R D was close to ambient CO2 concentration, and the elevated or decreased atmospheric CO2 concentration enhanced the R D of both species; (2) the response curves of R D-C a were simulated well by quadratic function. This phenomenon might be an inherent property of leaf R D of F. denudata and P. cathayanna. If this was true, it implies that effect of CO2 on R D could be interpreted with the relationship of R D-C a curves and the quadratic function.  相似文献   

3.
The water moss Fontinalis antipyretica L. is well suited for measuring CO2 exchange by infrared gas analysis (IRGA), as only CO2 is used for assimilation. Both in a state of full activity and of reduced activity in the course of a toxical charge the ratio of net primary productivity to respiration related to intermittent illumination is used as a bioassay. Three types regarding the proportion of net assimilation (AN) to respiration (RD) are refered to the toxical charge (phenol, HgCl2, CuSO4, CdCl2). In the case of displacing the balance of AN/RD in the diurnal cycle to the side of respiration, photosynthetic oxygenation in the water ecosystem decreases. The combination of measuring CO2 exchange by IRGA with a cyto-physiological investigation by determining the time of deplasmolysis of leaves is used for the prediction of vitality long before damage including lethal effects are to be recognizend morphologically.  相似文献   

4.
Gametophores of mosses Mnium undulatum and Polytrichum commune were submerged in distilled water or in calcium chloride solution (0.9 mM Ca2+) to induce hypoxia. The net photosynthetic (PN) and dark respiration rate (RD) were measured in the air containing 300–400 μmol(CO2)·mol−1(air) and 0.21 mol(O2)·mol−1(air). PN of M. undulatum gametophores decreased to 58 % of the control after 1-h submersion in water, whereas to 80 % of the control in P. commune gametophores. A smaller decrease in PN was observed when the gametophores were immersed in CaCl2 solution. In hypoxia, RD in the tested mosses species was a little higher than in the control.  相似文献   

5.
Knowledge of root respiration is a prerequisite for a better understanding of ecosystem carbon budget and carbon allocation. However, there are not many relevant data in the literature on direct measurements of in situ root respiration by root chamber method. Furthermore, few studies have been focused on the effects of root diameter (D r) and root nitrogen concentration (N r) on in situ root respiration among different seasons and tree species. To address these goals, we used a simplified root-chamber system to measure in situ root respiration rates of Acacia crassicarpa and Eucalyptus urophylla in subtropical plantations of south China. We found that the species and season variation in root respiration were affected by D r and N r. Also, the root respiration per unit dry mass (R r, nmol CO2 g−1 s−1) and root respiration per unit N (R n, nmol CO2 g N−1 s−1) were affected by D r and N r. The R r, R n, N r and soil temperature sensitivity (Q 10) of R r for the two species significantly decreased with an increase of D r. The R r of the two species showed significant an inter-seasonal and diurnal pattern, and this trend decreased with increasing D r. Both the R r and Q 10 of the two species increased with increasing N r. The D r and N r explained 54 and 52% of the observed variation in R r for A. crassicarpa, and 65 and 70% for E. urophylla. The R r, N r, and Q 10 of A. crassicarpa were significantly higher than those of E. urophylla. Our results indicated that root respiration was dependent on D r and N r, and this dependence varied with season and plant species.  相似文献   

6.
A trenching method was used to determine the contribution of root respiration to soil respiration. Soil respiration rates in a trenched plot (R trench) and in a control plot (R control) were measured from May 2000 to September 2001 by using an open-flow gas exchange system with an infrared gas analyser. The decomposition rate of dead roots (R D) was estimated by using a root-bag method to correct the soil respiration measured from the trenched plots for the additional decaying root biomass. The soil respiration rates in the control plot increased from May (240–320 mg CO2 m–2 h–1) to August (840–1150 mg CO2 m–2 h–1) and then decreased during autumn (200–650 mg CO2 m–2 h–1). The soil respiration rates in the trenched plot showed a similar pattern of seasonal change, but the rates were lower than in the control plot except during the 2 months following the trenching. Root respiration rate (R r) and heterotrophic respiration rate (R h) were estimated from R control, R trench, and R D. We estimated that the contribution of R r to total soil respiration in the growing season ranged from 27 to 71%. There was a significant relationship between R h and soil temperature, whereas R r had no significant correlation with soil temperature. The results suggest that the factors controlling the seasonal change of respiration differ between the two components of soil respiration, R r and R h.  相似文献   

7.
Slavtcheva  T.  Dimitrova  V. 《Photosynthetica》2001,39(1):29-33
Net photosynthetic rate (P N) and dark respiration rate (R D) were measured in Vitis vinifera L. cvs. Dimiat 4/24 (23rd subculture), Dimiat 4/38 (22nd subculture), and Italian Riesling 3/47 (22nd subculture) on days 3, 2, and 1 (1st series) before transfer from the in vitro culture and on days 14, 15, 16 (2nd series) and 28, 29, 30 (3rd series) after the transfer. P N of in vitro and ex vitro plants was strongly affected by irradiance. P N and R D of in vitro plantlets were lower and transpiration rate (E) was higher compared to those of ex vitro plantlets. P N, R D, and E changed in the course of acclimation.  相似文献   

8.
Net photosynthetic (P N) and dark respiration (R D) rate, stomatal (rs′) and internal (ri′) resistances to carbon dioxide were measured by gas exchange methods on leaves of different ages, expressed in leaf plastochron index units (LPI) for a fast growing poplar cultivar Unal 2. Although the optimal leaf age differs slightly for the different gas exchange parameters, leaf ontogeny is reflected in the same way in these different parameters. MaximalP N and minimalrs′ and ri′ values were found at LPI between 6 and 10. Chlorophyll concentrations were lowest at LPI lower than 10 although an increase in two steps was found, when leaf age increases up to maturity.  相似文献   

9.
The mid-day responses of wheat ear CO2 and water vapour exchange to full-season CO2 enrichment were investigated using a Free-Air CO2 Enrichment (FACE) apparatus. Spring wheat [Triticum aestivum (L). cv. Yecora Rojo] was grown in two experiments under ambient and elevated atmospheric CO2 (Ca) concentrations (approximately 370 μ mol mol 1 and 550 μ mol mol 1, respectively) combined first with two irrigation (Irr) schemes (Wet: 100% and Dry: 50% replacement of evapotranspiration) and then with two levels of nitrogen (N) fertilization (High: 350, Low: 70 kg ha 1 N). Blowers were used for Ca enrichment. Ambient Ca plots were exposed to blower induced winds as well the Ca × N but not in the Ca × Irr experiment. The net photosynthesis for the ears was increased by 58% and stomatal conductance (gs) was decreased by 26% due to elevated Ca under ample water and N supply when blowers were applied to both Ca treatments. The use of blowers in the Ca-enriched plots only during the Ca × Irr experiment (blower effect) and Low N supply restricted the enhancement of net photosynthesis of the ear due to higher Ca. In the latter case, the increase of net photosynthesis of the ear amounted to 26%. The decrease in gs caused by higher Ca was not affected by the blower effect and N treatment. The mid-day enhancement of net photosynthesis due to elevated Ca was higher for ears than for flag leaves and this effect was most pronounced under ample water and N supply. The contribution of ears to grain filling is therefore likely to increase in higher Ca environments in the future. In the comparison between Wet and Dry, the higher Ca did not alter the response of net photosynthesis of the ear and gs to Irr. However, Ca enrichment increased the drought tolerance of net photosynthesis of the glume and delayed the increase of the awn portion of net photosynthesis of the ear during drought. Therefore, the role of awns for maintaining high net photosynthesis of the ear under drought may decrease when Ca increases.  相似文献   

10.
The role of ear photosynthesis in grain filling was studied in a number of durum wheat (Triticum turgidum var durum L.) landraces and varieties from the Middle East, North Africa, and from the collections of ‘Institut National de la Recherche Agronomique’ (INRA, France) and ‘Centro International de Mejora de Maiz y Trigo’ (CIMMYT, Mexico). Plants were grown in the field in a Mediterranean climate. Flag leaves (blade plus sheath) and ears were kept in the dark from 1 week after anthesis to maturity which reduced grain weight by 22.4% and 59.0%, respectively. In a further experiment, the carbon isotope discrimination ratio (Δ) of ear bracts, awns and flag leaves was measured on samples taken at anthesis and on mature kernels. The mean value of Δ for the water soluble fraction of bracts (17.0‰) and awns (17.7‰) were lower than those of leaves (19.5‰) and fairly similar to those of kernels (17.4‰) averaged across all genotypes. Data indicate that most of the photosynthates in the grain come from ear parts and not from flag leaves. In addition, a higher water use efficiency (WUE) of ear parts than of the flag leaf is suggested by their lower Δ values. Gas exchange in ears and flag leaves was measured during grain filling. Averaged over all genotypes, CO2 diffusive conductance was about five times higher in the flag leaf than in the spike (with distal portions of awns outside the photosynthetic chamber) 2 weeks after anthesis. In absolute terms, the dark respiration rate (Rd) was greater than the net photosynthesis rate (Pn) by a factor of 1.74 in the spike, whereas Rd was much smaller, only 22.1, 65.7 and 24.8% of Pn in blade, sheath and awns, respectively. Data indicate that photosynthesis, and hence the water use efficiency (photosynthesis/transpiration), is greatly underestimated in ears because of the high rates of respiration which diminish the measured rates of net CO2 exchange. Results of 13C discrimination and gas exchange show that genotypes from North Africa have higher WUE than those from the Middle East. The high Rd values of ears as well as their low diffusive conductance suggest that CO2 from respiration may be used as source of carbon for ear photosynthesis. In the same way, the anatomy of glumes, for example, supports the role of bracts using internal CO2 as source of photosynthesis. In the first experiment, the Δ in mature grains from culms with darkened ears compared with control culms provided further evidence in support of this hypothesis. Thus, the Δ from kernels of control plants was 0.40 higher than that from ear-darkened plants, probably because of some degree of refixation (recycling) of respired CO2 in the grains.  相似文献   

11.
Responses of wheat (Triticum aestivum L.) to various concentrations of NaCl and levels of drought were followed. With the rise of NaCl or drought, or NaCl and drought together, growth was retarded. The water content of shoots and roots was mostly unchanged. The chlorophyll and carotenoid contents were increased in plants subjected to salinity or drought or both. Only high salinity level induced a considerable decrease in net photosynthetic rate (PN) and dark respiration rate (RD). PN and RD were decreased with the decrease of soil moisture content. The content of Na+ in the shoots and roots of wheat plants increased with increasing salinity or decreasing soil moisture content or both treatments. Considerable variations in the content of K+, Ca2+ or Mg2+ were induced by the NaCl, drought or both treatments.  相似文献   

12.
Acclimation of photosynthesis and respiration in shoots and ecosystem carbon dioxide fluxes to rising atmospheric carbon dioxide concentration (C a ) was studied in a brackish wetland. Open top chambers were used to create test atmospheres of normal ambient and elevated C a (=normal ambient + 34 Pa CO2) over mono-specific stands of the C3 sedge Scirpus olneyi, the dominant C3 species in the wetland ecosystem, throughout each growing season since April of 1987. Acclimation of photosynthesis and respiration were evaluated by measurements of gas exchange in excised shoots. The impact of elevated C a on the accumulation of carbon in the ecosystem was determined by ecosystem gas exchange measurements made using the open top chamber as a cuvette.Elevated C a increased carbohydrate and reduced Rubisco and soluble protein concentrations as well as photosynthetic capacity(A) and dark respiration (R d ; dry weight basis) in excised shoots and canopies (leaf area area basis) of Scirpus olneyi. Nevertheless, the rate of photosynthesis was stimulated 53% in shoots and 30% in canopies growing in elevated C a compared to normal ambient concentration. Elevated C a inhibited R d measured in excised shoots (–19 to –40%) and in seasonally integrated ecosystem respiration (R e ; –36 to –57%). Growth of shoots in elevated C a was stimulated 14–21%, but this effect was not statistically significant at peak standing biomass in midseason. Although the effect of elevated C a on growth of shoots was relatively small, the combined effect of increased number of shoots and stimulation of photosynthesis produced a 30% stimulation in seasonally integrated gross primary production (GPP). The stimulation of photosynthesis and inhibition of respiration by elevated C a increased net ecosystem production (NEP=GPP–R e ) 59% in 1993 and 50% in 1994. While this study consistently showed that elevated C a produced a significant increase in NEP, we have not identified a correspondingly large pool of carbon below ground.  相似文献   

13.
Nitrogen (N) added through atmospheric deposition or as fertilizer to boreal and temperate forests reduces both soil decomposer activity (heterotrophic respiration) and the activity of roots and mycorrhizal fungi (autotrophic respiration). However, these negative effects have been found in studies that applied relatively high levels of N, whereas the responses to ambient atmospheric N deposition rates are still not clear. Here, we compared an unfertilized control boreal forest with a fertilized forest (100 kg N ha?1 yr?1) and a forest subject to N‐deposition rates comparable to those in Central Europe (20 kg N ha?1 yr?1) to investigate the effects of N addition rate on different components of forest floor respiration and the production of ectomycorrhizal fungal sporocarps. Soil collars were used to partition heterotrophic (Rh) and autotrophic (Ra) respiration, which was further separated into respiration by tree roots (Rtr) and mycorrhizal hyphae (Rm). Total forest floor respiration was twice as high in the low N plot compared to the control, whereas there were no differences between the control and high N plot. There were no differences in Rh respiration among plots. The enhanced forest floor respiration in the low N plot was, therefore, the result of increased Ra respiration, with an increase in Rtr respiration, and a doubling of Rm respiration. The latter was corroborated by a slightly greater ectomycorrhizal (EM) fungal sporocarp production in the low N plot as compared to the control plot. In contrast, EM fungal sporocarp production was nearly eliminated, and Rm respiration severely reduced, in the high N plot, which resulted in significantly lower Ra respiration. We thus found a nonlinear response of the Ra components to N addition rate, which calls for further studies of the quantitative relations among N addition rate, plant photosynthesis and carbon allocation, and the function of EM fungi.  相似文献   

14.
Trichodesmium sp., isolated from the Great Barrier Reef lagoon, was cultured in artificial seawater media containing a range of Fe concentration. Fe additions stimulated growth, N2 fixation, cellular chlorophyll a content, light-saturated chlorophyll a-specific gross photosynthetic capacity (Pm chla) and the dark respiration rate (Rd chla). Cell yields only doubled for 9 nM Fe relative to zero added Fe, whereas N2 fixation increased 11-fold considerably for 450 nM Fe. The results suggest that N2 fixation of Trichodesmium is more sensitive to Fe limitation than are the cell yields.  相似文献   

15.
The relationships between dark respiration rate (R D) and net photosynthetic rate (P N) in Quercus ilex L. shrubs growing at the Botanical Garden in Rome were analysed. Correlation analysis of the data sets collected in the year 2006 confirmed the dependence among the considered leaf traits, in particular, R D was significantly (p<0.05) correlated with P N (r = 0.40). R D and P N increased from March to May [1.40±0.10 and 10.1±1.8 μmol(CO2) m−2 s−1 mean values of the period, respectively], when air temperature was in the range 14.8–25.2 °C, underlining the highest metabolic activity in the period of the maximum vegetative activity that favoured biomass accumulation. On the contrary, the highest R D [1.60±0.02 μmol(CO2) m−2 s−1], associated to the lowest P N rates (44 % of the maximum) and carbon use efficiency (CUE) in July underlined the mobilization of stored material during drought stress by a higher air temperature (32.7 °C).  相似文献   

16.
Using CO2 gasometry, net photosynthetic (P N) and dark respiration rates (R D) were measured in leaves or traps of 12 terrestrial carnivorous plant species usually grown in the shade. Generally, mean maximum P N (60 nmol CO2 g−1(DM) s−1 or 2.7 μmol m−2 s−1) was low in comparison with that of vascular non-carnivorous plants but was slightly higher than that reported elsewhere for carnivorous plants. After light saturation, the facultatively heliophytic plants behaved as shade-adapted plants. Mean R D in leaves and traps of all species reached about 50% of maximum P N and represents the high photosynthetic (metabolic) cost of carnivory.  相似文献   

17.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

18.
Effect of fruiting and drought or flooding on carbon balance of apple trees   总被引:4,自引:0,他引:4  
The response of fruiting or deblossomed trees to water stress such as drought or flooding was investigated in six semi open-top cuvettes each containing one apple (Malus domestica Borkh. cv. Golden Delicious) tree. Xylem water potentials of leaves dropped from -1.2 to -4.1 MPa within 7 d of drought, the effect being enhanced by fruiting. Apple trees without fruits showed smaller reductions in net photosynthetic rate (P N ) and dark respiration rate (R D ) after 2 d of drought and hence more positive carbon balances relative to fruiting trees. Flooding for 4 d had a more pronounced effect on P N than on transpiration, resulting in a reduced water use efficiency (WUE). This reduction in WUE was greater in the non-fruiting trees. Flooding reduced P N of the whole apple canopies irrespective of fruiting; aple trees without fruits increased R D resulting in a less positive carbon balance relative to fruiting trees. Fruiting increased the sensitivity to drought of apple trees (R D and P N ), but decreased their sensitivity to flooding (R D and WUE), suggesting different adaptation mechanisms for the two forms of water stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Seedlings of Eucalyptus grandis were grown at five different rates of nitrogen supply. Once steady‐state growth rates were established, a detailed set of CO2 and water vapour exchange measurements were made to investigate the effects of leaf nitrogen content (N), as determined by nitrogen supply rate, on leaf structural, photosynthetic, respiratory and stomatal properties. Gas exchange data were used to parametrize the Farquhar–von Caemmerer photosynthesis model. Leaf mass per area (LMA) was negatively correlated to N. A positive correlation was observed between both day (Rd) and night respiration (Rn) and N when they were expressed on a leaf mass basis, but no correlation was found on a leaf area basis. An Rd/Rn ratio of 0·59 indicated a significant inhibition of dark respiration by light. The maximum net CO2 assimilation rate at ambient CO2 concentration (Amax), the maximum rate of potential electron transport (Jmax) and the maximum rate of carboxylation (Vcmax) significantly increased with N, particularly when expressed on a mass basis. Although the maximum stomatal conductance to CO2 (gscmax) was positively correlated with Amax, there was no relationship between gscmax and N. Leaf N content influenced the allocation of nitrogen to photosynthetic processes, resulting in a decrease of the Jmax/Vcmax ratio with increasing N. It was concluded that leaf nitrogen concentration is a major determinant of photosynthetic capacity in Eucalyptus grandis seedlings and, to a lesser extent, of leaf respiration and nitrogen partitioning among photosynthetic processes, but not of stomatal conductance.  相似文献   

20.
Summary An empirical model for predicting net photosynthesis (P N ) and dark respiration (R D ) in the field was developed and tested for Bouteloua gracilis (H.B.K.) Lag., the dominant C4 grass of the North American shortgrass prairie. P N is predicted as a function of soil water potential, canopy air temperature, irradiance, and plant age, while R D is expressed as a function of soil water potential and temperature. The model accounted for 85% of the variability in the data base used to estimate parameter values. Results of a validation test showed good agreement between observed and predicted P N rates, suggesting this approach would be useful as a submodel of a grassland ecosystem model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号