首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Treatment of L1210 cells with either of two inhibitors of S-adenosylmethionine decarboxylase (AdoMetDC), namely 5'-deoxy-5'-[N-methyl-N-[2-(amino-oxy)ethyl])aminoadenosine or 5'-deoxy-5'-[N-methyl-N-(3-hydrazinopropyl)]aminoadenosine, produced a large increase in the amount of ornithine decarboxylase (ODC) protein. The increased enzyme content was due to a decreased rate of degradation of the protein and to an increased rate of synthesis, but there was no change in its mRNA content. The inhibitors led to a substantial decline in the amounts of intracellular spermidine and spermine, but to a big increase in the amount of putrescine. These results indicate that the content of ODC is negatively regulated by spermidine and spermine at the levels of protein translation and turnover, but that putrescine is much less effective in bringing about this repression. Addition of either spermidine or spermine to the cells treated with the AdoMetDC inhibitors led to a decrease in ODC activity, indicating that either polyamine can bring about this effect, but spermidine produced effects at concentrations similar to those found in the control cells and appears to be the physiologically important regulator. The content of AdoMetDC protein (measured by radioimmunoassay) was also increased by these inhibitors, and a small increase in its mRNA content was observed, but this was insufficient to account for the increase in protein. A substantial stabilization of AdoMetDC occurred in these cells, contributing to the increased enzyme content, but an increase in the rate of translation cannot be ruled out.  相似文献   

4.
Interestingly, there is a major difference in turnover rate between ornithine decarboxylases (ODCs) from various trypanosomatids. ODCs from Trypanosoma brucei and Leishmania donovani are both stable proteins, whereas ODC from Crithidia fasciculata is a metabolically unstable protein in the parasite. C. fasciculata ODC is also rapidly degraded in mammalian systems, whereas the closely related L. donovani ODC is not. The degradation of C. fasciculata ODC in the mammalian systems is shown to be dependent on a functional 26 S proteasome. However, in contrast to the degradation of mammalian ODC, the degradation of C. fasciculata ODC does not involve antizyme. Instead, it appears the degradation of C. fasciculata ODC may be associated with poly-ubiquitination of the enzyme.  相似文献   

5.
6.
The effect of oligosaccharide processing inhibitors on the fusion of L6 myoblasts was studied. The glucosidase inhibitors, castanospermine, 1-deoxynojirimycin and N-methyl-deoxynojirimycin were potent inhibitors of myoblast fusion, as was the mannosidase II inhibitor, swainsonine. Inhibition of fusion was reversed when inhibitors were removed. However, the mannosidase I inhibitor, 1-deoxymannojirimycin did not inhibit fusion. Changes in cell membrane oligosaccharide structure were followed by monitoring the binding of concanavalin A (conA) and wheat germ agglutinin (WGA) to cell surface membranes in cells treated with processing inhibitors. All the processing inhibitors resulted in increased binding of conA and decreased binding of WGA; this is consistent with the known mechanisms of inhibition of the inhibitors used in the study. Inhibition of fusion by the processing inhibitors also resulted in reduced activities of creatine phosphokinase, an enzyme used as a marker for biochemical differentiation during fusion. Treatment of a non-differentiating conA-resistant cell line with processing inhibitors did not induce fusion, but the cells did show altered lectin-binding properties. The main conclusion drawn from these studies is that cell surface glycoproteins probably containing the mannose (Man)9 structure are important for the fusion reaction.  相似文献   

7.
Serum and skeletal muscle-derived extracts (MDE) were bioassayed for their ability to promote [3H]thymidine incorporation in L6 myoblasts to determine if exercise-training increases mitogenic growth factor activity. Rats were trained by climbing a 60 cm vertical grid with progressively greater weight for 7 and 28 days. Serum from 7 day trained rats and vastus MDE from 7 and 28 day trained rats, but not rectus femoris MDE, had increased mitogenic activity compared to serum and MDE from untrained rats. These data suggest that exercise may increase mitogenic growth factors in some skeletal muscles.  相似文献   

8.
9.
The half-lives of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) have been studied in fetuses and placentas from 18-day-pregnant rats. While the turnover of fetal and placental SAMDC were slightly different (t1/2 = 38 and 75 min, respectively) the half-lives of fetal and placental ODC differed markedly. T1/2 of fetal ODC was 15 min, similar to other mammalian ODCs, but placental ODC showed a relatively high half-life, about 160 min. According to that, placental ODC was more resistant than the fetal enzyme to in vivo hyperthermic treatment (40 degrees C, 1 h). Our results suggest that the degradative mechanisms for ODC in rat placenta could be regulated differently to those in other mammalian tissues.  相似文献   

10.
A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed.

When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids.

  相似文献   

11.
12.
Treatment of tobacco liquid suspension cultures with methylglyoxal bis(guanylhydrazone) (MGBG) an inhibitor of S-adenosylmethionine decarboxylase, resulted in a dramatic overproduction of a 35-kDa peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Malmberg, R.L., and McIndoo, J. (1983) Nature 305, 623-625). MGBG treatment also resulted in a 20-fold increase in the activity of S-adenosylmethionine decarboxylase. Purification of S-adenosylmethionine decarboxylase from MGBG-treated cultures revealed that the overproduced 35-kDa peptide and S-adenosylmethionine decarboxylase are identical. Precursor incorporation experiments using [3H] methionine and [35S]methionine revealed that MGBG does not induce any increased synthesis of S-adenosylmethionine decarboxylase but rather stabilizes the protein to proteolytic degradation. The half-life of the enzyme activity was increased when MGBG was present in the growth medium. In addition to stabilizing S-adenosylmethionine decarboxylase, MGBG also resulted in the rapid and specific loss of arginine decarboxylase activity with little effect ornithine decarboxylase. The kinetics of this effect suggest that arginine decarboxylase synthesis was rapidly inhibited by MGBG. Exogenously added polyamines had little effect on ornithine decarboxylase, whereas S-adenosylmethionine and arginine decarboxylase activities rapidly diminished with added spermidine or spermine. Finally, inhibition of ornithine decarboxylase was lethal to the cultures, whereas inhibition of arginine decarboxylase was only lethal during initiation of growth in suspension culture.  相似文献   

13.
Glycogenolysis was studied in glycogen-rich perfused livers in which glycogen phosphorylase was fully converted into the a form by exposure of the livers to dibutyryl cyclic AMP. We monitored intracellular Pi by 31P n.m.r. Perfusion with Pi-free medium during 30 min caused a progressive decrease of the Pi signal to 50% of its initial value. In contrast, exposure of the livers to KCN and/or 2,4-dinitrophenol resulted in a rapid doubling of the Pi signal. Alterations in the intracellular Pi coincided with proportional changes in the rate of hepatic glycogenolysis (measured as the output of glucose plus lactate). The results indicate that the rate of glycogenolysis catalysed by phosphorylase a depends linearly on the hepatic Pi concentration. Hence the Km of phosphorylase a for its substrate Pi must be considerably higher than the concentrations that occur in the cytosol, even during hypoxia.  相似文献   

14.
Proteoglycans were isolated from the extracellular matrix (ECM) of L6J1 rat myoblasts; their influence on myoblast adhesion has been studied. Proteoglycan digestion with chondroitinase AC and heparinase III, which degrade polysaccharide moieties, has revealed that chondroitin sulfate proteoglycans are a major class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or a mixture of proteoglycans and a fibronectin-extracellular matrix. Myoblast adhesion to a substrate composed of fibronectin and proteoglycans is restored after the substrate was treated with chondroitinase AC. In conclusion, proteoglycans of L6J1 rat myoblast ECMs were isolated and purified. Chondroitin sulfate proteoglycans are a major class of proteoglycans. Isolated proteoglycans suppressed myoblast adhesion; the effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

15.
Proteoglycans were isolated from extracellular matrix of L6J1 rat myoblasts and their influence on myoblast adhesion was studied. Proteoglycan digestion with chondroitinase AC and heparinase III degrading the polysaccharide moieties revealed that chondroitin sulfate proteoglycans are the main class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or the mixture of proteoglycans and fibronectin/extracellular matrix. When being processed with chondroitinase AC the combined substrate of fibronectin and proteoglycans lost the capability of myoblast adhesion suppression. Thus, as a result of presented work the proteoglycans of L6J1 rat myoblast extracellular matrix were isolated and purified. The main class of proteoglycans was chondroitin sulphate proteoglycans. Isolated proteoglycans suppressed myoblast adhesion and this effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

16.
The active sites of bovine insulin-like growth factor (IGF) I and II fragments were studied. Overlapping fragments of IGF I (residues 1-25, 11-35, 21-45, 31-55, and 41-70) and of IGF II (residues 1-24, 10-34, 20-44, 30-54, and 40-67) were chemically synthesized. The activity of the fragments was measured by stimulating the proliferation of rat L6 myoblast cells. Two fragments of IGF I (residues 21-45 and 31-55) and two fragments of IGF II (residues 20-44 and 30-54) were active while the other fragments were inactive in stimulating cell proliferation. Although the activity of these fragments was observed only at a high concentration of 0.1 mM, the results imply that the active site is located around residues 31-45 for IGF I fragments and residues 30-44 for IGF II fragments. Consequently, an IGF I fragment (residues 26-50) having a five-residue extension to both the N- and C-terminal sites of residues 31-45 also stimulated the proliferation of L6 myoblast cells. Furthermore, the substitution of Ile-35 in two IGF II fragments (residues 21-45 and 31-55) by Ser inactivated these fragments. This suggests that Ile-35 is an essential residue for IGF II fragment activity. Ser-35, which was reported in the original sequencing of bovine IGF II, is incorrect in the sequence and furthermore has been consistently found to be an Ile-35 in our hands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.

No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.

In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  相似文献   

19.
The in vivo activities of arginine and ornithine decarboxylases, key enzymes in the biosynthesis of putrescine and thus polyamines, were measured in three different cell lines of carrot (Daucus carota) during growth and somatic embryogenesis. The activities of these two enzymes differed in the different cell lines in the presence of various levels of auxin (2,4 dichlorophenoxy acetic acid), but was highest during periods of active cell division. During somatic embryo development, the activities of both enzymes were highest during globular stage formation. Thus, both enzymes were found to be active during growth and somatic embryogenesis and could contribute to polyamine biosynthesis.  相似文献   

20.
Effects of calcitonin gene-related peptide (CGRP) and interleukin 6 (IL-6) on muscle cell differentiation were studied using cultured rat myoblasts (L6 cells). Cell morphology and the amounts of the messenger RNAs (mRNAs) of myogenin and Myf-5, DNA content, creatine kinase (CK) activity, and myoglobin (Mb) content in the cultured cells were examined serially over 10 days of culture. In the presence of CGRP or IL-6, the mRNAs of myogenin and Myf-5 were expressed earlier and at a higher concentration in the treated cells than in the control cells. The ratios of CK activity to DNA content (CK/DNA) and of Mb content to DNA content (Mb/DNA) on day 10 of culture also were greater than in the control cells. Furthermore, the mRNAs of myogenin and Myf-5 in cultured cells incubated with both CGRP and IL-6 increased more rapidly than in cells cultured with CGRP or IL-6 alone, and the ratios of CK/DNA and Mb/DNA on day 10 were more than twice those in the presence of CGRP or IL-6. These findings indicate that both CGRP and IL-6 facilitate the differentiation of myoblasts and may have an additive effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号