首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
beta-Hexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of beta-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. Heritable deficiency of this enzyme results in various forms of GalNAc-beta(1,4)-[N-acetylneuraminic acid (2,3)]-Gal-beta(1,4)-Glc-ceramide gangliosidosis, including Tay-Sachs disease. We have determined the x-ray crystal structure of a beta-hexosaminidase from Streptomyces plicatus to 2.2 A resolution (Protein Data Bank code ). beta-Hexosaminidases are believed to use a substrate-assisted catalytic mechanism that generates a cyclic oxazolinium ion intermediate. We have solved and refined a complex between the cyclic intermediate analogue N-acetylglucosamine-thiazoline and beta-hexosaminidase from S. plicatus to 2.1 A resolution (Protein Data Bank code ). Difference Fourier analysis revealed the pyranose ring of N-acetylglucosamine-thiazoline bound in the enzyme active site with a conformation close to that of a (4)C(1) chair. A tryptophan-lined hydrophobic pocket envelopes the thiazoline ring, protecting it from solvolysis at the iminium ion carbon. Within this pocket, Tyr(393) and Asp(313) appear important for positioning the 2-acetamido group of the substrate for nucleophilic attack at the anomeric center and for dispersing the positive charge distributed into the oxazolinium ring upon cyclization. This complex provides decisive structural evidence for substrate-assisted catalysis and the formation of a covalent, cyclic intermediate in family 20 beta-hexosaminidases.  相似文献   

2.
An acid α-glucosidase (AAG) with an optimum pH of 4.5 and two isoforms of neutral α-glucosidase (NAG I and II) with an optimum pH of 6.5 were partially purified from preclimacteric banana pulp tissues by monitoring the 4-methylumbelliferyl α-D-glucoside (4MUαG) hydrolyzing activity. The molecular weights of the AAG and the two NAG were 70,000 and 42,000, respectively, by gel filtration. By kinetic studies, the AAG was found to be a typical maltase that required substrates such as maltose, maltotriose, maltotetraose, and maltopentaose rather than soluble starch. On the other hand, the two NAGs preferred 4MUαG to maltose as substrate and their maltase activities were about 50 times lower than that of the AAG. The NAGs, as well as the AAG, did not hydrolyze isomaltose, trehalose, sucrose, or glycogen at all. Sucrose was a competitive inhibitor of the AAG but not NAGs toward 4MUαG. Glucose and maltose were also competitive inhibitors of both AAG and NAGs.  相似文献   

3.
4.
The gram-positive soil bacterium Cellulomonas fimi is shown to produce at least two intracellular beta-N-acetylglucosaminidases, a family 20 beta-N-acetylhexosaminidase (Hex20), and a novel family 3-beta-N-acetylglucosaminidase/beta-glucosidase (Nag3), through screening of a genomic expression library, cloning of genes and analysis of their sequences. Nag3 exhibits broad substrate specificity for substituents at the C2 position of the glycone: kcat/Km values at 25 degrees C were 0.066 s(-1) x mM(-1) and 0.076 s(-1) x mM(-1) for 4'-nitrophenyl beta-N-acetyl-D-glucosaminide and 4'-nitrophenyl beta-D-glucoside, respectively. The first glycosidase with this broad specificity to be described, Nag3, suggests an interesting evolutionary link between beta-N-acetylglucosaminidases and beta-glucosidases of family 3. Reaction by a double-displacement mechanism was confirmed for Nag3 through the identification of a glycosyl-enzyme species trapped with the slow substrate 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-glucopyranoside. Hex20 requires the acetamido group at C2 of the substrate, being unable to cleave beta-glucosides, since its mechanism involves an oxazolinium ion intermediate. However, it is broad in its specificity for the D-glucosyl/D-galactosyl configuration of the glycone: Km and kcat values were 53 microM and 482.3 s(-1) for 4'-nitrophenyl beta-N-acetyl-D-glucosaminide and 66 microM and 129.1 s(-1) for 4'-nitrophenyl beta-N-acetyl-D-galactosaminide.  相似文献   

5.
Family 18 chitinases catalyze the hydrolysis of β-1,4-glycosidic bonds in chitin. The mechanism has been proposed to involve the formation of an oxazolinium ion intermediate via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile (instead of an enzyme residue). Here, we have modeled the first step of the chitin hydrolysis catalyzed by Serratia marcescens chitinase B for the first time using a combined quantum mechanics/molecular mechanics approach. The calculated reaction barriers based on multiple snapshots are 15.8-19.8 kcal mol(-1) [B3LYP/6-31+G(d)//AM1-CHARMM22], in good agreement with the activation free energy of 16.1 kcal mol(-1) derived from experiment. The enzyme significantly stabilizes the oxazolinium intermediate. Two stable conformations ((4)C(1)-chair and B(3,O)-boat) of the oxazolinium ion intermediate in subsite -1 were unexpectedly observed. The transition state structure has significant oxacarbenium ion-like character. The glycosyl residue in subsite -1 was found to follow a complex conformational pathway during the reaction ((1,4)B → [(4)H(5)/(4)E](++) → (4)C(1) ? B(3,O)), indicating complex conformational behavior in glycoside hydrolases that utilize a substrate-assisted catalytic mechanism. The D142N mutant is found to follow the same wild-type-like mechanism: the calculated barriers for reaction in this mutant (16.0-21.1 kcal mol(-1)) are higher than in the wild type, in agreement with the experiment. Asp142 is found to be important in transition state and intermediate stabilization.  相似文献   

6.
A disaccharide substrate of Manbeta1-4GlcNAc-oxazoline 2 was designed and synthesized as a novel probe for detection of the transglycosylating activity of endoglycosidases. A regio- and stereoselective transglycosylation reaction of 2 to GlcNAcbeta1-O-pNP or Dns-Asn(GlcNAc)-OH catalyzed by endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) and endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has been demonstrated for the first time, resulting in the core trisaccharide derivative Manbeta1-4GlcNAcbeta1-4GlcNAcbeta1-O-pNP 8 (or -(Dns)Asn-OH). Interestingly, the transglycosylation proceeds irreversibly; the resulting trisaccharide 8 was not hydrolyzed by Endo-M and Endo-A. Based on these results, a new mechanism including an oxazolinium ion intermediate has been proposed for the endoglycosidase-catalyzed hydrolysis or transglycosylation.  相似文献   

7.
N-Acylethanolamines (NAEs) are members of the fatty acid amide family. The NAEs have been proposed to serve as metabolic precursors to N-acylglycines (NAGs). The sequential oxidation of the NAEs by an alcohol dehydrogenase and an aldehyde dehydrogenase would yield the N-acylglycinals and/or the NAGs. Alcohol dehydrogenase 3 (ADH3) is one enzyme that might catalyze this reaction. To define a potential role for ADH3 in NAE catabolism, we synthesized a set of NAEs and evaluated these as ADH3 substrates. NAEs were oxidized by ADH3, yielding the N-acylglycinals as the product. The (V/K)app values for the NAEs included here were low relative to cinnamyl alcohol. Our data show that the NAEs can serve as alcohol dehydrogenase substrates.  相似文献   

8.
SpHex, a retaining family 20 glycosidase from Streptomyces plicatus, catalyzes the hydrolysis of N-acetyl-beta-hexosaminides. Accumulating evidence suggests that the hydrolytic mechanism involves substrate-assisted catalysis wherein the 2-acetamido substituent acts as a nucleophile to form an oxazolinium ion intermediate. The role of a conserved aspartate residue (D313) in the active site of SpHex was investigated through kinetic and structural analyses of two variant enzymes, D313A and D313N. Three-dimensional structures of the wild-type and variant enzymes in product complexes with N-acetyl-d-glucosamine revealed substantial differences. In the D313A variant the 2-acetamido group was found in two conformations of which only one is able to aid in catalysis through anchimeric assistance. The mutation D313N results in a steric clash in the active site between Asn-313 and the 2-acetamido group preventing the 2-acetamido group from providing anchimeric assistance, consistent with the large reduction in catalytic efficiency and the insensitivity of this variant to chemical rescue. By comparison, the D313A mutation results in a shift in a shift in the pH optimum and a modest decrease in activity that can be rescued by using azide as an exogenous nucleophile. These structural and kinetic data provide evidence that Asp-313 stabilizes the transition states flanking the oxazoline intermediate and also assists to correctly orient the 2-acetamido group for catalysis. Based on analogous conserved residues in the family 18 chitinases and family 56 hyaluronidases, the roles played by the Asp-313 residue is likely general for all hexosaminidases using a mechanism involving substrate-assisted catalysis.  相似文献   

9.
The zinc-dependent gelatinases belong to the family of matrix metalloproteinases (MMPs), enzymes that have been shown to play a key role in angiogenesis and tumor metastasis. These enzymes are capable of hydrolyzing extracellular matrix (ECM) components under physiological conditions. Specific and selective inhibitors aimed at blocking their activity are highly sought for use as potential therapeutic agents. We report herein on a novel mode of inhibition of gelatinase A (MMP-2) by the recently characterized inhibitors 4-(4-phenoxphenylsulfonyl)butane-1,2-dithiol (inhibitor 1) and 5-(4-phenoxphenylsulfonyl) pentane-1,2-dithiol (inhibitor 2). These synthetic inhibitors are selective for MMP-2 and MMP-9. We show that the dithiolate moiety of these inhibitors chelates the catalytic zinc ion of MMP-2 via two sulfur atoms. This mode of binding results in alternation of the coordination number of the metal ion and the induction of conformational changes at the microenvironment of the catalytic zinc ion; a set of events that is likely to be at the root of the potent slow binding inhibition behavior exhibited by these inhibitors. This study demonstrates a distinct approach for the understanding of the structural mechanism governing the molecular interactions between potent inhibitors and catalytic sites of MMPs, which may aid in the design of effective inhibitors.  相似文献   

10.
Selective tosylation of methyl 2-benzamido-2-deoxy-α-D-glucopyranoside at room temperature gave a mixture of the 6-sulphonate and the 3,6- and 4,6-disulphonates in yields of 25, 20, and 12%, respectively. Treatment of the 4-acetate of the 3,6-disulphonate with iodide ion gave the 3,6-di-iodo-D-gluco derivative, with overall retention of configuration involving participation of the 2-benzamido substituent in the substitution of the 3-tosyl group and formation of an intermediary oxazolinium ion. Reduction of the 3,6-di-iodo derivative gave methyl 2-benzamido-2,3,6-trideoxy-α-D-ribo-hexopyranoside. The disulphonates, characterised as their monoacetates, were synthesised from methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-α-D-glucopyranoside by unambiguous routes, each of which was superior to selective tosylation.  相似文献   

11.
Unusual TFA catalyzed cleavage reaction is reported for peptide containing pipecolic acid residues. Although the use of TFA under standard cleavage conditions is sufficiently mild to prevent degradation of the desired products, the amide bond between consecutive pipecolic acid residues is unexpectedly hydrolyzed by standard TFA treatment. The hydrolysis is proposed to proceed via an oxazolinium ion intermediate. This mechanism is supported by H/D exchange as observed by ESI-MS and NMR experiments. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
The lytic transglycosylases cleave the bacterial cell wall heteropolymer peptidoglycan with the same specificity as the muramidases (lysozymes), between the N-acetylmuramic acid and N-acetylglucosamine residues, with the concomitant formation of a 1,6-anhydromuramoyl residue. The putative catalytic residue in the family 3 lytic transglycosylase from Pseudomonas aeruginosa, Glu162 as identified by sequence alignment to the homologous enzyme from Escherichia coli, was replaced with both Ala and Asp by site-directed mutagenesis. Neither mutant enzyme differed structurally from the wild-type enzyme, as judged by CD spectroscopy, but both were enzymatically inactive confirming the essential role of Glu162 in the mechanism of action of this lytic transglycosylase. The beta-hexosaminidase inhibitor NAG-thiazoline was shown to inhibit the activity of lytic transglycosylase activity, thus providing the first direct evidence that the formation of the 1,6-anhydromuramoyl residue may proceed through an oxazolinium ion intermediate involving anchimeric assistance. Using surface plasmon resonance and difference absorbance spectroscopy, Kd values of 1.8 and 1.4 mM, respectively, were determined for NAG thiazoline, while its parent compound N-acetylglucosamine neither inhibited nor appeared to bind the lytic transglycosylase with any significant affinity.  相似文献   

13.
Vocadlo DJ  Withers SG 《Biochemistry》2005,44(38):12809-12818
Beta-N-acetylglucosaminidases are commonly occurring enzymes involved in the degradation of polysaccharides and glycoconjugates containing N-acetylglucosamine residues. Such enzymes have been classified into glycoside hydrolase families 3 and 20 and are believed to follow distinct chemical mechanisms. Family 3 enzymes are thought to follow a standard retaining mechanism involving a covalent glycosyl enzyme intermediate while family 20 enzymes carry out a substrate-assisted mechanism involving the transient formation of an enzyme-sequestered oxazoline or oxazolinium ion intermediate. Detailed mechanistic analysis of representatives of these two families provides support for these mechanisms as well as detailed insights into transition state structure. Alpha-secondary deuterium kinetic isotope effects of kH/kD = 1.07 and 1.10 for Streptomyces plicatus beta-hexosaminidase (SpHex) and Vibrio furnisii beta-N-acetylglucosaminidase (ExoII) respectively indicate transition states with oxocarbenium ion character in each case. Br?nsted plots for hydrolysis of a series of aryl hexosaminides are quite different in the two cases. For SpHex a large degree of proton donation is suggested by the relatively low value of beta(lg) (-0.29) on kcat/Km, compared with a beta(lg) of -0.79 for ExoII. Most significantly the Taft plots derived from kinetic parameters for a series of p-nitrophenyl N-acyl glucosaminides bearing differing levels of fluorine substitution in the N-acyl group are completely different. A very strong dependence (slope = -1.29) is seen for SpHex, indicating direct nucleophilic participation by the acetamide, while essentially no dependence (0.07) is seen for ExoII, suggesting that the acetamide plays purely a binding role. Taken together these data provide unprecedented insight into enzymatic glycosyl transfer mechanisms wherein the structures of both the nucleophile and the leaving group are systematically varied.  相似文献   

14.
Cationic Inhibitors of Serine Proteinases from Buckwheat Seeds   总被引:2,自引:0,他引:2  
Preparations of low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat (Fagopyrum esculentum) seeds by chromatography of seed extract on trypsin-Sepharose 4B, Mono-Q, and Mono-S ion exchangers (FPLC regime). Their molecular masses, determined by mass spectrometry, were 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c), and 6031 daltons (BWI-4c). All of the inhibitors possess high pH- and thermal stability in the pH range 2-12. In addition to trypsin, BWI-3c and BWI-4c inhibited chymotrypsin and subtilisin-like bacterial proteases. The N-terminal sequences of all of the inhibitors were determined: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues), and BWI-4c (20 residues). In their physicochemical properties and N-terminal amino acid sequences, the buckwheat seed trypsin inhibitors BWI-3c and BWI-4c appear to belong to potato proteinase inhibitor I family.  相似文献   

15.
Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn(2+) at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn(2+)-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn(2+)-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn(2+)-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.  相似文献   

16.
Interaction of subtilisins with serpins.   总被引:1,自引:0,他引:1       下载免费PDF全文
Serpins are well-characterized inhibitors of the chymotrypsin family serine proteinases. We have investigated the interaction of two serpins with members of the subtilisin family, proteinases that possess a similar catalytic mechanism to the chymotrypsins, but a totally different scaffold. We demonstrate that alpha 1 proteinase inhibitor inhibits subtilisin Carlsberg and proteinase K, and alpha 1 antichymotrypsin inhibits proteinase K, but not subtilisin Carlsberg. When inhibition occurs, the rate of formation and stability of the complexes are similar to those formed between serpins and chymotrypsin family members. However, inhibition of subtilisins is characterized by large partition ratios where more than four molecules of each serpin are required to inhibit one subtilisin molecule. The partition ratio is caused by the serpins acting as substrates or inhibitors. The ratio decreases as temperature is elevated in the range 0-45 degrees C, indicating that the serpins are more efficient inhibitors at high temperature. These aspects of the subtilisin interaction are all observed during inhibition of chymotrypsin family members by serpins, indicating that serpins accomplish inhibition of these two distinct proteinase families by the same mechanism.  相似文献   

17.
Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D(140)XD(142)XE(144) sequence motif. In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced k(cat) and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with k(cat), indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue.  相似文献   

18.
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion.In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1′ pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.  相似文献   

19.
A series of pseudo-peptides with general formula X-l-Glu-NH(2) (with X corresponding to an acyl moiety with a long aryl-alkyl side chain) have been synthesized, evaluated as inhibitors of matrix metalloproteases (MMPs), and found to display remarkable nanomolar affinity. The loss in potency associated with a substitution of the P(2)' l-glutamate by a l-glutamine corroborates the importance of a carboxylate at this position. The binding mode of some of these inhibitors was characterized in solution and by x-ray crystallography in complex with various MMPs. The x-ray crystal structures reveal an unusual binding mode with the glutamate side chain chelating the active site zinc ion. Competition experiments between these inhibitors and acetohydroxamic acid, a small zinc-binding molecule, are in accord with the crystallographic results. One of these pseudo-dipeptides displays potency and selectivity toward MMP-12 similar to the best MMP-12 inhibitors reported to date. This novel family of pseudo peptides opens new opportunities to develop potent and selective inhibitors for several metzincins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号