首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
When cultured in 20% O(2), human cytotrophoblasts fuse to form the syncytiotrophoblast with marked induction of hCYP19 (aromatase) gene expression. When cultured in 2% O(2), cytotrophoblast fusion and induced hCYP19 expression are prevented. These effects of hypoxia are mediated by increased expression of mammalian achaete/scute homologue-2 (Mash-2), which increases levels of upstream stimulatory factors 1 and 2 (USF1/2) and their binding as heterodimers to E-boxes surrounding the hCYP19 promoter. In studies to define mechanisms for O(2) regulation of syncytiotrophoblast differentiation, we found that hypoxia and overexpression of Mash-2 markedly increased cyclin B1 levels in cultured trophoblasts and the proportion of cells at the G(2)/M transition. Unlike USF proteins, USF1/2 mRNA levels are unaffected by O(2) tension. To determine whether increased O(2) might enhance proteasomal degradation of USF1/2, human trophoblasts were cultured in 2% or 20% O(2) with or without proteasome inhibitors. In cells cultured in 20% O(2), proteasome inhibitors increased USF1/2 protein levels and blocked spontaneous induction of hCYP19 expression, cell fusion, and differentiation. Like hypoxia, inhibitory effects of proteasome inhibitors on hCYP19 expression were mediated by increased binding of USF1/2 to the E-boxes. In human trophoblast cells cultured in 20% O(2), increased polyubiquitylation of USF1/2 proteins was observed. Thus, early in gestation when the placenta is relatively hypoxic, increased USF1/2 may block trophoblast differentiation and hCYP19 gene expression. In the second trimester, increased O(2) tension promotes proteasomal degradation of USF1/2, resulting in syncytiotrophoblast differentiation and induction of hCYP19 expression.  相似文献   

3.
4.
5.
The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.  相似文献   

6.
7.
Transcriptional regulation of aromatase in placenta and ovary   总被引:3,自引:0,他引:3  
Our goal is to define the cellular and molecular mechanisms for tissue- and cell-specific, developmental and hormonal regulation of the human CYP19 (aromatase P450/P450arom) gene in estrogen-producing cells. In this article, we review studies using transgenic mice and transfected cells to identify genomic regions and response elements that mediate CYP19 expression in placenta and ovary, as well as to define the molecular mechanisms for O2 regulation of differentiation and CYP19 gene expression in human trophoblast cells in culture. We also highlight recent findings regarding LRH-1 versus SF-1 mRNA expression and cellular localization in the mouse ovary during the estrous cycle and various stages of pregnancy. Spatial and temporal expression patterns of mRNAs encoding these orphan nuclear receptors in comparison to those of P450arom and 17-hydroxylase/17,20-lyase mRNAs, suggest an important role of LRH-1 together with SF-1 in ovarian steroidogenesis.  相似文献   

8.
9.
GCMa regulates the syncytin-mediated trophoblastic fusion   总被引:6,自引:0,他引:6  
  相似文献   

10.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) has several ligands including activated alpha 2-macroglobulin, pregnancy zone protein, and very low density lipoproteins enriched with apolipoprotein E. The diversity of ligands suggests a role for the alpha 2MR/LRP in a variety of processes including tissue remodeling and lipoprotein metabolism. We examined alpha 2MR/LRP in placental trophoblasts, invasive cells that also function in lipid transport and cholesterol metabolism. alpha 2MR/LRP protein was localized by immunohistochemistry in the syncytiotrophoblast of term placenta. Cytotrophoblasts did not stain prominently. alpha 2MR/LRP (protein and message) in primary cultures of human trophoblast cells increased as cytotrophoblasts differentiated into syncytiotrophoblast. 8-Bromo-cAMP prevented this increase and suppressed alpha 2MR/LRP expression. The cyclic nucleotide had similar suppressive effects on alpha 2MR/LRP in BeWo choriocarcinoma cells. In contrast, low density lipoprotein receptor gene expression was increased. We conclude that: 1) there is a differentiation-dependent pattern of alpha 2MR/LRP expression in the human trophoblast; 2) cAMP negatively regulates alpha 2MR/LRP; 3) there is an inverse relationship between alpha 2MR/LRP and low density lipoprotein receptor gene expression in trophoblast cells.  相似文献   

11.
During human gestation, the placental syncytiotrophoblast develops the capacity to synthesize large amounts of estrogen from C19-steroids secreted by the fetal adrenals. The conversion of C19-steroids to estrogens is catalyzed by aromatase P450 (P450arom), product of the CYP19 gene. The placenta-specific promoter of the hCYP19 gene lies 100,000 bp upstream of the translation initiation site in exon II. In studies using transgenic mice and transfected human trophoblast cells we have defined a 246-bp region upstream of placenta-specific exon I.1 that mediates placental cell-specific expression. Using transgenic mice, we also observed that as little as 278 bp of DNA flanking the 5′-end of ovary-specific hCYP19 exon IIa was sufficient to target ovary-specific expression. This ovary-specific promoter contains response elements that bind cAMP-response element-binding protein (CREB) and the orphan nuclear receptors SF-1 and LRH-1, which are required for cAMP-mediated stimulation of CYP19 expression in granulosa and luteal cells during the estrous cycle and pregnancy. In this article, we review our studies to define genomic regions and response elements that mediate placenta-specific expression of the hCYP19 gene. The temporal and spatial expression of LRH-1 versus SF-1 in the developing gonad during mouse embryogenesis and in the postnatal ovary also will be considered.  相似文献   

12.
A proteomics survey of human placental syncytiotrophoblast (ST) apical plasma membranes revealed peptides corresponding to flotillin-1 (FLOT1) and flotillin-2 (FLOT2). The flotillins belong to a class of lipid microdomain-associated integral membrane proteins that have been implicated in clathrin- and caveolar-independent endocytosis. In the present study, we characterized the expression of the flotillin proteins within the human placenta. FLOT1 and FLOT2 were coexpressed in placental lysates and BeWo human trophoblast cells. Immunofluorescence microscopy of first-trimester and term placentas revealed that both proteins were more prominent in villous endothelial cells and cytotrophoblasts (CTs) than the ST. Correspondingly, forskolin-induced fusion in BeWo cells resulted in a decrease in FLOT1 and FLOT2, suggesting that flotillin protein expression is reduced following trophoblast syncytialization. The flotillin proteins co-localized with a marker of fluid-phase pinocytosis, and knockdown of FLOT1 and/or FLOT2 expression resulted in decreased endocytosis of cholera toxin B subunit. We conclude that FLOT1 and FLOT2 are abundantly coexpressed in term villous placental CTs and endothelial cells, and in comparison, expression of these proteins in the ST is reduced. These findings suggest that flotillin-dependent endocytosis is unlikely to be a major pathway in the ST, but may be important in the CT and endothelium.  相似文献   

13.
Steroidogenesis in the placenta has been studied widely, but little is known about steroid metabolism in ectopic pregnancy. Previous studies have indicated that trophoblast invasion and placentation in the uterus and the fallopian tube may be controlled by similar mechanisms. As far as 17β-estradiol (E2) production is concerned, it has been well demonstrated that its biosynthesis in the placenta involves the action of P450 aromatase (P450arom) and 17β-hydroxysteroid dehydrogenase type 1 (17HSD1). The purpose of this study was to characterize the expression pattern of P450arom and 17HSD1 at the fetal–maternal interface, particularly in various trophoblast cells, in tubal pregnancy. Using in situ hybridization, P450arom mRNA was localized in syncytiotrophoblast (ST) cells, which are mainly responsible for hormone production during pregnancy, whereas no signal was detected in villous cytotrophoblast (VCT), column CT and extravillous CT (EVCT) cells. Immunohistochemical assays revealed that 17HSD1 is present in ST cells, a large portion of EVCT cells and 20% of column CT cells. On the other hand, no expression of 17HSD1 was detected in VCT cells. In addition, 17HSD1 was found in epithelial cells of the fallopian tube. Interestingly, the expression level of 17HSD1 in fallopian tube epithelium during tubal pregnancy was significantly higher than that during normal cycle. Our data provide the first evidence that normal and tubal pregnancies possess identical expression of P450arom and 17HSD1 in ST cells and therefore, similar E2 production in the placenta. Further, the association of 17HSD1 with EVCT cells indicates that 17HSD1 perhaps play a role in trophoblast invasion. Finally, increased expression of 17HSD1 in epithelial cells of fallopian tube may lead to a local E2 supply sufficient for the maintenance of tubal pregnancy.  相似文献   

14.
15.
Estrogen synthesis evolved in chordates to control reproduction. The terminal enzyme in the cascade directly responsible for estrogen synthesis is aromatase cytochrome P450 (P450arom) encoded by the CYP19 gene. Mammals typically have a single CYP19 gene but pigs, peccaries and other Suiformes have two or more resulting from duplication in a common ancestor. Duplication of CYP genes in the steroid synthetic cascade has occurred for only one other enzyme, also terminal, 11beta-hydroxylase P450 (P450c11). P450arom and P450c11 share common substrates and even physiological functions as possible remnants from a common P450 progenitor, perhaps an ancestral P450arom, which is supported by phylogenetic analysis. Conserved tissue-specific expression patterns of P450arom paralogs in placenta and gonads of pigs and peccaries suggest how functional adaptation may have proceeded divergently and influenced adopted reproductive strategies including ovulation rate and litter size. Data suggest that the porcine placental paralog evolved catalytically to protect female conceptuses from testosterone produced by male siblings; the gonadal paralog to synthesize a novel, nonaromatizable testosterone metabolite (1OH-testosterone) that may increase ovulation rate. This would represent a coevolution facilitating litter bearing as pigs diverged from peccaries. Evidence of convergence between the peccary CYP19 genes and lower tissue expression may therefore represent initiation of loss of the functional paralogs. Studies on the Suiforme aromatases provide insights into the evolution of the steroidogenic cascade and metabolic pathways in general, how it translates into physiological adaptations (altered reproductive strategies for instance), and how duplicated genes become stabilized or disappear from genomes.  相似文献   

16.

Background  

Placenta-derived oestrogens have an impact on the growth and differentiation of the trophoblast, and are involved in processes initiating and facilitating birth. The enzyme that converts androgens into oestrogens, aromatase cytochrome P450 (P450arom), is encoded by the Cyp19 gene. In the placenta of the cow, expression of Cyp19 relies on promoter 1.1 (P1.1). Our recent studies of P1.1 in vitro and in a human trophoblast cell line (Jeg3) revealed that interactions of placental nuclear protein(s) with the E-box element at position -340 are required for full promoter activity. The aim of this work was to identify and characterise the placental E-box (-340)-binding protein(s) (E-BP) as a step towards understanding how the expression of Cyp19 is regulated in the bovine placenta.  相似文献   

17.
18.
Kagawa N  Cao Q  Kusano K 《Steroids》2003,68(2):205-209
CYP19 (P450arom) catalyzes the aromatization reaction of C19 steroids leading to estrogens. While readily expressed in insect cells, the human P450arom has been a difficult P450 to express in Escherichia coli at useful levels. In the present study, we replaced the N-terminal sequence in human CYP19 with the corresponding sequences of other microsomal P450s (CYP2C11 and CYP17) that are efficiently expressed in E. coli. Although the N-terminal replacement alone was not sufficient for the expression, human P450arom was successfully expressed up to the level of 240nmol/l culture by the combination of the N-terminal replacement and the induction of cold stress response by 1 microg/ml chloramphenicol. Membrane fractions containing the expressed P450arom catalyzed aromatization of androstenedione with a specific activity of 4.9 nmol/min/nmol P450. Our results are important to provide large quantities of human P450arom as an active form for structure-function studies.  相似文献   

19.
20.
The expression of glypican-3 (GPC3), a heparan-sulfate proteoglycan associated with the Simpson-Golabi-Behmel fetal overgrowth syndrome, was studied in normal human placental tissue and cell lines derived from human placentae. Cytotrophoblasts derived from term placentae expressed GPC3 mRNA at low levels in culture. GPC3 mRNA expression increased markedly during trophoblast differentiation. By contrast, fibroblast cell lines derived from normal placentae did not express GPC3 in culture. Similarly, choriocarcinoma cell lines derived from human placentae (BeWo, JAR, and JEG) failed to express GPC3 mRNA. In situ hybridization confirmed the localization of GPC3 mRNA to the syncytiotrophoblast. Furthermore, immunohistochemical staining of paraffin imbedded placental tissue demonstrated intense staining of the syncytiotrophoblast cell layer and less intense staining of cytotrophoblasts. No staining of mesenchymal elements was noted. These data confirm the presence of GPC3 in human placenta and suggest it is expressed by the differentiated syncytiotrophoblast at term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号