首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The avian leukosis virus (ALV) entry mechanism is controversial, with evidence for and against a low-pH requirement for viral fusion. To further address this question, we tested the entry of human immunodeficiency virus type 1 (HIV-1) pseudotyped with the envelope protein of subgroup B ALV (ALV-B) in the presence of three different lysosomotropic agents. These lysosomotropic agents were able to block the entry of wild-type and pseudotyped ALV-B in two different cell lines, strongly suggesting that ALV-B requires a low-pH step for entry. ALV-B and pH-dependent Semliki Forest virus (SFV) entered cells with slower uptake kinetics than HIV-1, which is pH independent. These slow uptake rates support the theory that ALV-B utilizes endocytic pathways to enter cells. Using immunofluorescence and electron microscopy analysis, we visualized the colocalization of virus particles with the endosomal marker transferrin and demonstrated virus particles in clathrin-coated vesicles and endosome-like structures. Surprisingly, a low-pH treatment did not overcome the inhibition of ALV-B entry by lysosomotropic agents. This indicates that, in contrast to SFV, ALV-B is unable to fuse at the cellular surface, even at a low pH. Taken together, our findings suggest that endocytosis and a subsequent low-pH step are critical for successful ALV-B infection.  相似文献   

2.
The cellular receptor for subgroup A avian leukosis viruses (ALV-A) has a small, 83-amino-acid extracellular domain containing a motif that is related in sequence to the ligand binding repeats of the low-density lipoprotein receptor. Extensive mutagenesis of the ALV-A receptor has identified two acidic amino acids (Asp-46 and Glu-47) and an adjacent aromatic amino acid (Trp-48) in the carboxy-terminal portion of this low-density lipoprotein receptor-related motif that are crucial for efficient viral entry. In addition, a 19-amino-acid peptide derived from this region efficiently and specifically blocked subgroup A viral infection when oxidized to form a disulfide bond previously predicted to form in the native receptor (C. Bélanger, K. Zingler, and J. A. T. Young, J. Virol. 69:1019-1024, 1995). Thus, the charged and aromatic amino acid determinants that are required for viral infection appear to lie on a small loop region of the ALV-A receptor. Previously, a single aromatic and one or more charged residues on the CD4 receptor for human and simian immunodeficiency viruses, and the MCAT receptor for ecotropic murine leukemia viruses, were shown to be important for viral entry. These results suggest that different retroviruses may recognize related determinants on structurally divergent cellular receptors.  相似文献   

3.
Knauss DJ  Young JA 《Journal of virology》2002,76(11):5404-5410
The TVB receptor for subgroup B, D, and E avian sarcoma and leukosis viruses (ASLVs) is a tumor necrosis factor receptor-related protein that is most closely related to the TRAIL receptors. Here we show that the major subgroup B viral interaction determinants of TVB are contained within a linear 15-amino-acid peptide derived from the N-terminal region of the receptor. Moreover, this peptide was sufficient not only for binding to ASLV-B but also for activating viral entry into mammalian cells that lacked the cognate viral receptor. Peptide-dependent viral entry was blocked in the presence of bafilomycin A1, indicating that virions can be trafficked to an acidic endosomal fusion compartment without the need for physical attachment of the viral receptor to a cellular membrane.  相似文献   

4.
Subgroups B, D, and E avian leukosis viruses (ALV-B, -D, and -E) share the same chicken receptor, TVB(S1), a tumor necrosis factor receptor (TNFR)-related protein. These viruses, however, exhibit nonreciprocal receptor interference (NRI): cells preinfected with ALV-B or ALV-D are resistant to superinfection by viruses of all three subgroups, whereas those pre-infected by ALV-E are resistant only to superinfection by other subgroup E viruses. In this study, we investigated the basis of this phenomenon by characterizing the interaction of TVB(S1) with ALV-B Env or ALV-E Env. Sequential immunoprecipitation analysis using surface envelope immunoglobulin fusion proteins revealed the existence of two separate types of TVB(S1) that are encoded by the same cDNA clone. One form, designated the type 1 receptor, is specific for ALV-B and ALV-E. The other form, the type 2 receptor, is specific for ALV-B. We show that a protein consisting of only the first and second extracellular cysteine-rich domains of TVB(S1) is capable of forming both receptor types. However, the third extracellular cysteine-rich domain is required for efficient formation of the type 1 receptor. We also demonstrate that heterogeneous N-linked glycosylation cannot explain the difference in activities of the two receptor types. The existence of two types of TVB(S1) explains the NRI pattern between ALV-B and -E: subgroup B viruses establish receptor interference with both receptor types, whereas subgroup E viruses interfere only with the type 1 receptor, leaving the type 2 receptor available to mediate subsequent rounds of ALV-B entry. The formation of a TVB receptor type that is specific for cytopathic ALV may also have important implications for understanding how some subgroups of ALV cause cell death.  相似文献   

5.
The extracellular domain of the subgroup A avian sarcoma and leukemia virus (ALSV-A) receptor contains a region that is related in sequence to the ligand-binding motifs of the low-density lipoprotein receptor (LDLR). This domain contains six cysteines that are highly conserved between different members of the LDLR protein superfamily, and these residues are presumed to participate in intrachain disulfide bonds. To assess the importance of each cysteine in the ALSV-A receptor, individual or multiple cysteines were mutated to alanines and the altered receptors were tested for the ability to confer susceptibility to viral infection. Receptors bearing single mutations allowed subgroup A viral entry, albeit at less than wild-type levels. Receptors containing two or three substitutions were completely inactive if one of the changed residues was Cys-35 or Cys-50. Of the altered receptors tested, the only exception to this rule was a functional receptor which lacked both Cys-35 and Cys-50, an activity that was dependent on the presence of other cysteines in this protein. Most interestingly, a receptor containing both Cys-35 and Cys-50 but lacking the other four cysteines was completely functional. These results demonstrate the importance of Cys-35 and Cys-50 for viral entry mediated by the ALSV-A receptor and show that in the presence of these two residues, all of the other cysteines in this protein can be removed without loss of this function.  相似文献   

6.
Rai T  Caffrey M  Rong L 《Journal of virology》2005,79(23):14962-14966
Avian sarcoma and leukosis virus subgroup A (ASLV-A) entry is mediated by interactions between the viral glycoprotein EnvA and its cognate receptor Tva. Previously, some interesting mutants of ASLV-A have been selected by others which can use chicken Tva, but not quail Tva, for efficient entry. The mutant phenotypes are caused by two point mutations within the surface subunit of EnvA (S. L. Holmen, D. C. Melder, and M. J. Federspiel, J. Virol. 75:726-737, 2001). In this study, we have shown that the altered receptor specificity maps to the LDL-A module of Tva. Further, we have identified two residues in the chicken LDL-A module that allow more efficient viral entry by the mutant viruses. These results demonstrate that the altered receptor specificity of the mutant viruses is determined by specific interactions with residues in the LDL-A module of Tva.  相似文献   

7.
The ability of transformation-defective deletion mutants of Schmidt-Ruppin Rous sarcoma virus to induce tumors and generate recovered sarcoma viruses (rASVs) was correlated with the partial src sequences retained in the transformation-defective viral genomes. Since all the transformation-defective viruses that were capable of generating rASVs retained a portion of the 3' src sequence, regardless of the extent of the 5' src deletion, and those lacking the 3' src were unable to generate rASVs, it appears that the 3', but most likely not the 5', src sequence retained in the transformation-defective viral genome is essential for rASV formation. However, rASVs derived from a particular mutant, td109, which retained a portion of the 3' src sequence, but lacked most (if not all) of the 5' src sequence, were all found to be defective in replication. Analyses of the genomic sequences of 13 isolates of td109-derived rASVs revealed that they contained various deletions in viral envelope (env), polymerase (pol), and structural protein (gag) genes. Ten isolates of rASVs contained env deletions. One isolate (rASV3812) contained a deletion of env and the 3' half of pol, and one isolate (rASV398) contained a deletion of env and pol. The one with the most extensive deletion (rASV374) had a deletion from the p12-coding sequence through pol and env. In addition, the 5' src region of td109-derived rASVs were heterogeneous. Among the 7 isolates analyzed in detail, one isolate of rASV had a small deletion of the 5' src sequence, whereas three other isolates contained extra new sequences upstream from src. Both env- and env- pol- rASVs were capable of directing the synthesis of precursor and mature gag proteins in the infected nonproducer cells. We attribute the deletions in the replication-defective rASVs to the possibility that the 5' recombination site between the td109 and c-src sequence, involved regions of only partial homology due to lack of sufficient 5' src sequence in the td109 genome for homologous recombination. A model of recombination between the viral genome and the c-src sequence is proposed to account for the requirement of the 3' src sequence and the basis for the generation of deletions in td109-derived rASVs.  相似文献   

8.
The receptor for the subgroup A avian sarcoma and leukosis viruses [ASLV(A)] is the cellular glycoprotein Tva. A soluble form of Tva, sTva, was produced and purified with a baculovirus expression system. Using this system, 7 to 10 mg of purified sTva per liter of cultured Sf9 cells was obtained. Characterization of the carbohydrate modification of sTva revealed that the three N glycosylation sites in sTva were differentially utilized; however, the O glycosylation common to Tva produced in mammalian and avian cells was not observed. Purified sTva demonstrates significant biological activity, specifically blocking infection of avian cells by ASLV(A) with a 90% inhibitory concentration of approximately 25 pM. A quantitative enzyme-linked immunosorbent assay, developed to assess the binding of sTva to ASLV envelope glycoprotein, demonstrates that sTva has a high affinity for EnvA, with an apparent dissociation constant of approximately 0.3 nM. Once they are bound, a very stable complex is formed between EnvA and sTva, with an estimated complex half-life of 6 h. The soluble receptor protein described here represents a valuable tool for analysis of the receptor-envelope glycoprotein interaction and for structural analysis of Tva.  相似文献   

9.
To better understand retroviral entry, we have characterized the interactions between subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and Tva, the receptor for ALV(A), that result in receptor interference. We have recently shown that soluble forms of the chicken and quail Tva receptor (sTva), expressed from genes delivered by retroviral vectors, block ALV(A) infection of cultured chicken cells ( approximately 200-fold antiviral effect) and chickens (>98% of the birds were not infected). We hypothesized that inhibition of viral replication by sTva would select virus variants with mutations in the surface glycoprotein (SU) that altered the binding affinity of the subgroup A SU for the sTva protein and/or altered the normal receptor usage of the virus. Virus propagation in the presence of quail sTva-mIgG, the quail Tva extracellular region fused to the constant region of the mouse immunoglobulin G (IgG) protein, identified viruses with three mutations in the subgroup A hr1 region of SU, E149K, Y142N, and Y142N/E149K. These mutations reduced the binding affinity of the subgroup A envelope glycoproteins for quail sTva-mIgG (32-, 324-, and 4,739-fold, respectively) but did not alter their binding affinity for chicken sTva-mIgG. The ALV(A) mutants efficiently infected cells expressing the chicken Tva receptor but were 2-fold (E149K), 10-fold (Y142N), and 600-fold (Y142N/E149K) less efficient at infecting cells expressing the quail Tva receptor. These mutations identify key determinants of the interaction between the ALV(A) glycoproteins and the Tva receptor. We also conclude from these results that, at least for the wild-type and variant ALV(A)s tested, the receptor binding affinity was directly related to infection efficiency.  相似文献   

10.
Here we present the first molecular characterization of the defect associated with an avian sarcoma and leukosis virus (ASLV) receptor resistance allele, tvb(r). We show that resistance to infection by subgroups B, D, and E ASLV is explained by the presence of a single base pair mutation that distinguishes this allele from tvb(s1), an allele which encodes a receptor for all three viral subgroups. This mutation generates an in-frame stop codon that is predicted to lead to the production of a severely truncated protein.  相似文献   

11.
Wu ZC  Zhu MZ  Bian XM  Ma CT  Zhao P  Cui ZZ 《病毒学报》2011,27(5):447-455
本研究比较了从山东地方品系鸡群分离到的二株B亚型禽白血病病毒(ALV)SDAU09E3和SDAU09C2的全基因组序列及它们在细胞培养上的复制动态。这二株ALV-B的同源性为95.4%,与GenBank中3株B亚群参考株之间的同源性也均在91.0%~94.9%间,而与其它亚群参考株的同源性均低于87.9%。与亚群无关的gag、pol基因和LTR的核苷酸序列比较表明,这二株ALV-Bgp85基因的gag和pol基因与所有比较的参考株的同源性均在93%以上。LTR与其他外源性ALV参考株的LTR间的同源性在72.6%~88.3%范围内,但与E亚群内源性ALV的LTR的同源性只有51.5%。然而,这二个ALV-B的LTR的同源性也只有74.8%,远低于其他基因组部分的同源性,特别是它们的LTR的U3区同源性只有68.8%,二者在二个CAAT分布上也显著不同。对这二株ALV-B在DF-1细胞上的复制动态比较表明,它们在细胞培养上清液中的TCID50值非常类似,但SDAU09E3株核衣壳蛋白p27抗原的含量显著高于SDAU09C2株。这表明,同一亚群的不同毒株在复制过程中,所表达的p27抗原量与所形成的具有传染性的病毒量间没有平行关系。这一差异与LTR-U3区的相关性则有待应用感染性克隆技术来做进一步深入研究。  相似文献   

12.
The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned. Previously, we established a genetic linkage between tvc and several other nearby genetic markers on chicken chromosome 28, including tva. In this study, we used this information to clone the tvc gene and identify the Tvc receptor. A bacterial artificial chromosome containing a portion of chicken chromosome 28 that conferred susceptibility to ASLV(C) infection was identified. The tvc gene was identified on this genomic DNA fragment and encodes a 488-amino-acid protein most closely related to mammalian butyrophilins, members of the immunoglobulin protein family. We subsequently cloned cDNAs encoding Tvc that confer susceptibility to infection by subgroup C viruses in chicken cells resistant to ASLV(C) infection and in mammalian cells that do not normally express functional ASLV receptors. In addition, normally susceptible chicken DT40 cells were resistant to ASLV(C) infection after both tvc alleles were disrupted by homologous recombination. Tvc binds the ASLV(C) envelope glycoproteins with low-nanomolar affinity, an affinity similar to that of binding of Tva and Tvb with their respective envelope glycoproteins. We have also identified a mutation in the tvc gene in line L15 chickens that explains why this line is resistant to ASLV(C) infection.  相似文献   

13.
L Rong  P Bates 《Journal of virology》1995,69(8):4847-4853
The genes encoding the receptor for subgroup A Rous sarcoma viruses (tva) were recently cloned from both chicken and quail cells (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993; J. A. T. Young, P. Bates, and H. E. Varmus, J. Virol. 67:1811-1816, 1993). Previous work suggested that only the extracellular domain of Tva interacts with the virus (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993). Tva is a small membrane-associated protein containing in its extracellular domain a 40-amino-acid region which is closely related to the low-density lipoprotein receptor (LDLR) repeat motif. To determine the region of the Tva extracellular domain responsible for viral receptor function, we created chimeric proteins containing various regions of the Tva extracellular domain fused with a murine CD8 membrane anchor. Analysis of these proteins demonstrates that any chimera containing the Tva LDLR repeat motif can specifically bind the envelope protein of subgroup A avian sarcoma and leukosis viruses. Furthermore, NIH 3T3 cell lines expressing these chimeric proteins were efficiently infected by subgroup A avian sarcoma and leukosis virus vectors. Our results demonstrate that the 40-residue-long LDLR repeat motif of Tva is responsible for viral receptor function.  相似文献   

14.
The cellular receptor for subgroup A avian leukosis and sarcoma virus (ALSV-A) is Tva, which contains a motif related to repeats in the low density lipoprotein receptor (LDLR) ligand binding repeat (LBr) and which is necessary for viral entry. As observed with LBr repeats of LDLR, the 47 residue LBr domain of Tva (sTva47) requires calcium during oxidative folding to form the correct disulfide bonds, and calcium enhances the structure of correctly oxidized sTva47, as well as its ability to bind the viral envelope protein (Env). However, solution nuclear magnetic resonance studies indicate that, even in the presence of excess calcium, sTva47 exists in an ensemble of conformations. Nonetheless, as reported here, the structure of the predominant sTva47 solution conformer closely resembles that of other LBr repeats, with identical S-S binding topology and octahedral calcium coordination. The location of W48 and other critical residues on the surface suggests a region of the molecule necessary for Env binding and to mediate post-binding events important for ALSV-A cell entry.  相似文献   

15.
A receptor that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses (ALSV-A) has been described (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993). A soluble form of the receptor was generated to determine whether this protein interacts directly with virus particles in the absence of other cell surface factors. The soluble protein comprised the extracellular region of the ALSV-A receptor fused to an antibody epitope tag and six histidine residues. Preincubating this protein with virus led to an efficient block to infection of avian cells by ALSV-A but had no effect on infection by ALSV-B, ALSV-C, or ALSV-D. Furthermore, an antibody directed against the introduced epitope tag immunoprecipitated ALSV-A particles bound to the soluble receptor. In contrast, other ALSV subgroups were not immunoprecipitated by this procedure. These data demonstrate that the cloned receptor interacts directly with ALSV-A and discriminates between different ALSV subgroups at the level of virus binding.  相似文献   

16.
Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.  相似文献   

17.
J A Young  P Bates    H E Varmus 《Journal of virology》1993,67(4):1811-1816
We used a genetic strategy to isolate the chicken gene believed to encode the receptor for subgroup A avian leukosis and sarcoma viruses (ALSV-A). Chicken genomic DNA was transfected into monkey COS-7 cells, and two independent primary transfectants susceptible to ALSV-A infection were identified by using ALSV-A vectors containing a hygromycin B resistance gene. A second round of transfection and selection in mouse BALB/3T3 fibroblasts again led to isolation of a transfectant susceptible to infection by ALSV-A. Plasmid DNA sequences linked to chicken DNA during the primary transfection segregated with chicken DNA in the secondary transfectant and served as a molecular tag to clone the gene conferring susceptibility. Expression of the cloned gene in mouse BALB/3T3 cells conferred susceptibility to infection by ALSV-A but not by ALSV-B. Therefore the cloned gene most probably represents the tv-a locus, the genetically defined receptor gene for ALSV-A.  相似文献   

18.
L Rong  A Edinger    P Bates 《Journal of virology》1997,71(5):3458-3465
Receptor specificity in avian sarcoma and leukosis viruses (ASLV) maps to the central region of the envelope surface protein, SU. Two hypervariable regions, hr1 and hr2, within this region of SU are the principal determinants of receptor specificity. The cellular receptor for subgroup A ASLV, Tva, utilizes a 40-residue, acidic, cysteine-rich sequence for viral binding and entry. This domain in Tva is closely related to the ligand-binding domain of the low-density lipoprotein receptor (LDLR). Ligands bind to LDLR via the interaction of clustered basic residues in the ligand with the acidic cysteine-rich domains of the receptor. Analysis of the ASLV envelope sequences revealed a cluster of basic residues within hr2 that is unique to the subgroup A viruses, suggesting a possible role for these residues in receptor recognition. Therefore, the effects of altering these basic residues on subgroup A envelope expression, receptor binding, and infectivity were examined. Most of the mutant proteins were transported to the cell surface and processed normally. Receptor binding was diminished approximately 50% by alanine substitution at amino acid R213 or K227, whereas substitution by alanine at R210, R223, or R224 had no effect. However, when coupled with mutations at R213 or K227, changes at R223,R224 reduced envelope binding by 90%. Mutation of all five basic residues abrogated receptor binding. The effect of the hr2 mutations on ASLV envelope-mediated infection did not parallel the effect on receptor binding. Residues 210, 213, 223, and 224 were important for efficient infection, while mutations at residue 227 had little effect on infectivity. These results demonstrate that the basic residues in the ASLV envelope have roles in both receptor recognition and post-receptor binding events during viral entry.  相似文献   

19.
20.
The avian retroviral pol gene-encoded DNA endonuclease (pol-endo) has been shown to selectively cleave the viral long terminal repeat sequences (LTRs) in single-stranded DNA substrates in a region known to be joined to host DNA during integration (G. Duyk, J. Leis, M. Longiaru, and A.M. Skalka, Proc. Natl. Acad. Sci. USA 80:6745-6749, 1983). The preferred sites of cleavage were mapped to the unique U5/U3 junctions found only in covalently closed circular DNA molecules containing two tandem LTRs. The cuts occurred three nucleotides 5' to the axis of symmetry of the 12-of-15-base-pair nearly perfect inverted repeat which marks the LTR junction. Experiments with double-stranded supercoiled DNA substrates revealed a similar specificity for nicking. Also, the endonuclease associated with the pol cleavage product, pp32, has the same specificity as the alpha beta form. The limits of sequence required for site-selective cleavage near the U5/U3 junction were established with single-stranded DNA substrates. A domain no larger than 44 base pairs allowed site-selective cleavage in each strand in vitro. Recognition of either strand appeared to be independent of the other, and in each case, the critical sequence was asymmetrically distributed with respect to the U5/U3 junction. The predominant contribution was from the U5 domain; this is consistent with its conservation in the LTR sequences of a number of avian sarcoma and leukosis viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号