首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RraA is an evolutionary conserved protein inhibitor of RNase E, which catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli and forms the core component of the degradosome, a large protein complex involved in RNA metabolism. Here, we report that co-expression of RraA reduces the ribonucleolytic activity in cells over-producing RNase E and consequently rescues these cells from growth arrest. These findings suggest that inability of cells over-producing RNase E to normally grow results from increased cellular ribonucleolytic activity and RraA is able to effectively modulate the catalytic activity of RNase E in vivo.  相似文献   

3.
4.
RraA and RraB are recently discovered protein inhibitors of RNAse E, which forms a large protein complex termed the degradosome that catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli . Here, we report that these E. coli protein inhibitors physically interact with RNAse ES, a Streptomyces coelicolor functional ortholog of RNAse E, and inhibit its action in vivo as well as in vitro ; however, unlike their ability to differentially modulate E. coli RNAse E action in a substrate-dependent manner by altering the composition of the degradosome, both proteins appear to have a general inhibitory effect on the ribonucleolytic activity of RNAse ES, which does not interact with E. coli polynucleotide phosphorylase, a major component of the degradosome. Our findings suggest that these regulators of RNAse activity have a conserved intrinsic property enabling them to directly act on RNAse E-related enzymes and inhibit their general ribonucleolytic activity.  相似文献   

5.
The Escherichia coli protein regulator of RNase E activity A (RraA) has recently been shown to act as a trans-acting modulator of RNA turnover in bacteria; it binds to the essential endonuclease RNase E and inhibits RNA processing in vivo and in vitro. Here, we report the 2.0A X-ray structure of RraA. The structure reveals a ring-like trimer with a central cavity of approximately 12A in diameter. Based on earlier sequence analysis, RraA had been identified as a putative S-adenosylmethionine:2-demethylmenaquinone and was annotated as MenG. However, an analysis of the RraA structure shows that the protein lacks the structural motifs usually required for methylases. Comparison of the observed fold with that of other proteins (and domains) suggests that the RraA fold is an ancient platform that has been adapted for a wide range of functions. An analysis of the amino acid sequence shows that the E.coli RraA exhibits an ancient relationship to a family of aldolases.  相似文献   

6.
RraA is a recently discovered protein inhibitor of RNase E that catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli. In the genome of Vibrio vulnificus, two open reading frames that potentially encode proteins homologous to E. coli, RraA-designated RraAV1 and RraAV2, have respectively 80.1% and 59.0% amino acid identity to RraA. The authors report that coexpression of RraAV1 protein in E. coli cells overproducing RNase E rescued these cells from growth arrest and restored their normal growth, whereas coexpression of RraAV2 protein further inhibited the growth of E. coli cells, whose growth was already impaired by overproduction of RNase E. Analyses of the steady-state level of various RNase E substrates indicated that the coexpression of RraAV1 more efficiently inhibited RNase E action than coexpression of RraA, and consequently resulted in the more increased abundance of each RNA species tested in vivo. The inhibitory effect by RraAV2 coexpression on RNase E was observed only in the case of trpA mRNA, indicating the possibility of RNA substrate-dependent inhibition of RraAV2 on RNase E. The findings suggest that these regulators of ribonuclease activity have both a conserved inhibitory function and a differential inhibitory activity on RNase E-like enzymes across the species.  相似文献   

7.
RraA is a protein inhibitor of RNase E, which degrades and processes numerous RNAs in Escherichia coli. Streptomyces coelicolor also contains homologs of RNase E and RraA, RNase ES and RraAS1/RraAS2, respectively. Here, we report that, unlike other RraA homologs, RraAS1 directly interacts with the catalytic domain of RNase ES to exert its inhibitory effect. We further show that rraAS1 gene deletion in S. coelicolor results in a higher growth rate and increased production of actinorhodin and undecylprodigiosin, compared with the wild-type strain, suggesting that RraAS1-mediated regulation of RNase ES activity contributes to modulating the cellular physiology of S. coelicolor.  相似文献   

8.
9.
10.
Bacterial ribonuclease E (RNase E) plays a crucial role in the processing and decay of RNAs. A small protein named RraA negatively regulates the activity of RNase E via protein-protein interaction in various bacteria. Recently, RraAS1 and RraAS2, which are functional homologs of RraA from Escherichia coli, were identified in the Gram-positive species Streptomyces coelicolor. RraAS1 and RraAS2 inhibit RNase ES ribonuclease activity in S. coelicolor. RraAS1 and RraAS2 have a C-terminal extension region unlike typical bacterial RraA proteins. In this study, we present the crystal structure of RraAS2, exhibiting a hexamer arranged in a dimer of trimers, consistent with size exclusion chromatographic results. Importantly, the C-terminal extension region formed a long α-helix at the junction of the neighboring subunit, which is similar to the trimeric RraA orthologs from Saccharomyces cerevisiae. Truncation of the C-terminal extension region resulted in loss of RNase ES inhibition, demonstrating its crucial role. Our findings present the first bacterial RraA that has a hexameric assembly with a C-terminal extension α-helical region, which plays an essential role in the regulation of RNase ES activity in S. coelicolor.  相似文献   

11.
The Escherichia coli endoribonuclease RNase E is an essential enzyme having key roles in mRNA turnover and the processing of several structured RNA precursors, and it provides the scaffold to assemble the multienzyme RNA degradosome. The activity of RNase E is inhibited by the protein RraA, which can interact with the ribonuclease''s degradosome-scaffolding domain. Here, we report that RraA can bind to the RNA helicase component of the degradosome (RhlB) and the two RNA-binding sites in the degradosome-scaffolding domain of RNase E. In the presence of ATP, the helicase can facilitate the exchange of RraA for RNA stably bound to the degradosome. Our data suggest that RraA can affect multiple components of the RNA degradosome in a dynamic, energy-dependent equilibrium. The multidentate interactions of RraA impede the RNA-binding and ribonuclease activities of the degradosome and may result in complex modulation and rerouting of degradosome activity.  相似文献   

12.
13.
Members of the DEAD-box family of RNA helicases contribute to virtually every aspect of RNA metabolism, in organisms from all domains of life. Many of these helicases are constituents of multicomponent assemblies, and their interactions with partner proteins within the complexes underpin their activities and biological function. In Escherichia coli the DEAD-box helicase RhlB is a component of the multienzyme RNA degradosome assembly, and its interaction with the core ribonuclease RNase E boosts the ATP-dependent activity of the helicase. Earlier studies have identified the regulator of ribonuclease activity A (RraA) as a potential interaction partner of both RNase E and RhlB. We present structural and biochemical evidence showing how RraA can bind to, and modulate the activity of RhlB and another E. coli DEAD-box enzyme, SrmB. Crystallographic structures are presented of RraA in complex with a portion of the natively unstructured C-terminal tail of RhlB at 2.8-Å resolution, and in complex with the C-terminal RecA-like domain of SrmB at 2.9 Å. The models suggest two distinct mechanisms by which RraA might modulate the activity of these and potentially other helicases.  相似文献   

14.
RraA is a protein inhibitor of RNase E (Rne), which catalyzes the endoribonucleolytic cleavage of a large proportion of RNAs in Escherichia coli. The antibiotic-producing bacterium Streptomyces coelicolor also contains homologs of RNase E and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2, respectively. Here, we report that RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. Analyses of the steady-state level of RNase E substrates indicated that coexpression of RraAS2 in E. coli cells overproducing Rns effectively inhibits the ribonucleolytic activity of full-length RNase ES, but its inhibitory effects were moderate or undetectable on other truncated forms of Rns, in which the N- or/and C-terminal scaffold domain was deleted. In addition, RraAS2 more efficiently inhibited the in vitro ribonucleolytic activity of RNase ES than that of a truncated form containing the catalytic domain only. Coimmunoprecipitation and in vivo cross-linking experiments further showed necessity of both scaffold domains of RNase ES for high-affinity binding of RraAS2 to the enzyme, resulting in decreased RNA-binding capacity of RNase ES. Our results indicate that RraAS2 is a protein inhibitor of RNase ES and provide clues to how this inhibitor affects the ribonucleolytic activity of RNase ES.  相似文献   

15.
Tang J  Luo M  Niu S  Zhou H  Cai X  Zhang W  Hu Y  Yin Y  Huang A  Wang D 《The protein journal》2010,29(8):583-590
RNase E functions as the rate-limiting enzyme in the global mRNA metabolism as well as in the maturation of functional RNAs. The endoribonuclease, binding to the PNPase trimer, the RhlB monomer, and the enolase dimer, assembles into an RNA degradosome necessary for effective RNA metabolism. The RNase E processing is found to be negatively regulated by the protein modulator RraA which appears to work by interacting with the non-catalytic region of the endoribonuclease and significantly reduce the interaction between RNase E and PNPase, RhlB and enolase of the RNA degradosome. Here we report the crystal structure of RraA from P. aeruginosa to a resolution of 2.0 ?. The overall architecture of RraA is very similar to other known RraAs, which are highly structurally conserved. Gel filtration and dynamic light scattering experiments suggest that the protein regulator is arranged as a hexamer, consistent with the crystal packing of "a dimer of trimer" arrangement. Structure and sequence conservation analysis suggests that the hexamer RraA contains six putative charged protein-protein interaction sites which may serve as binding sites for RNase E.  相似文献   

16.
RNase E (Rne) plays a key role in the processing and degradation of RNA in Escherichia coli. In the genome of Vibrio vulnificus, one open reading frame potentially encodes a protein homologous to E. coli RNase E, designated RNase EV, which N-terminal (1-500 amino acids) has 86.4% amino acid identity to the N-terminal catalytic part of RNase E (N-Rne). Here, we report that both the full-length and the N-terminal part of RNase EV (N-RneV) functionally complement E. coli RNase E and their expression consequently supports normal growth of RNase E-depleted E. coli cells. E. coli cells expressing N-RneV showed copy numbers of ColE1-type plasmid similar to that of E. coli cells expressing N-Rne, indicating in vivo ribonucleolytic activity of N-RneV on RNA I, an antisense regulator of ColE1-type plasmid replication. In vitro cleavage assays further showed that N-RneV has cleavage activity and specificity of RNase E on RNase E-targeted sequence of RNA I (BR13). Our findings suggest that RNase E-like proteins have conserved enzymatic properties that determine substrate specificity across species.  相似文献   

17.
Previous work has detected an RNase E-like endoribonucleolytic activity in cell extracts obtained from Streptomyces. Here, we identify a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that shows endoribonucleolytic cleavage specificity characteristic of RNase E, confers viability on and allows propagation of Escherichia coli cells lacking RNase E and accomplishes RNase E-like regulation of plasmid copy number in E. coli. However, notwithstanding its complementation of rne-deleted E. coli, RNase ES did not accurately process 9S rRNA from E. coli. Additionally, whereas RNase E is normally required for E. coli survival, rns is not an essential gene in S. coelicolor. Deletion analysis mapped the catalytic domain of RNase ES near its centre and showed that regions located near the RNase ES termini interact with an S. coelicolor homologue of polynucleotide phosphorylase (PNPase) - a major component of E. coli RNase E-based degradosomes. The interacting arginine- and proline-rich segments resemble the C-terminally located degradosome scaffold region of E. coli RNase E. Our results indicate that RNase ES is a structurally shuffled RNase E homologue showing evolutionary conservation of functional RNase E-like enzymatic activity, and suggest the existence of degradosome-like complexes in Gram-positive bacteria.  相似文献   

18.
We present here the structure of Yer010c protein of unknown function, solved by Multiple Anomalous Diffraction and revealing a common fold and oligomerization state with proteins of the regulator of ribonuclease activity A (RraA) family. In Escherichia coli, RraA has been shown to regulate the activity of ribonuclease E by direct interaction. The absence of ribonuclease E in yeast suggests a different function for this family member in this organism. Yer010cp has a few supplementary secondary structure elements and a deep pseudo-knot at the heart of the protein core. A tunnel at the interface between two monomers, lined with conserved charged residues, has unassigned residual electron density and may constitute an active site for a yet unknown activity.  相似文献   

19.
The rnhA gene encoding RNase HI from a psychrotrophic bacterium, Shewanella sp. SIB1, was cloned, sequenced and overexpressed in an rnh mutant strain of Escherichia coli. SIB1 RNase HI is composed of 157 amino acid residues and shows 63% amino acid sequence identity to E.coli RNase HI. Upon induction, the recombinant protein accumulated in the cells in an insoluble form. This protein was solubilized and purified in the presence of 7 M urea and refolded by removing urea. Determination of the enzymatic activity using M13 DNA-RNA hybrid as a substrate revealed that the enzymatic properties of SIB1 RNase HI, such as divalent cation requirement, pH optimum and cleavage mode of a substrate, are similar to those of E.coli RNase HI. However, SIB1 RNase HI was much less stable than E.coli RNase HI and the temperature (T(1/2)) at which the enzyme loses half of its activity upon incubation for 10 min was approximately 25 degrees C for SIB1 RNase HI and approximately 60 degrees C for E.coli RNase HI. The optimum temperature for the SIB1 RNase HI activity was also shifted downward by 20 degrees C compared with that of E.coli RNase HI. Nevertheless, SIB1 RNase HI was less active than E.coli RNase HI even at low temperatures. The specific activity determined at 10 degrees C was 0.29 units/mg for SIB1 RNase HI and 1.3 units/mg for E.coli RNase HI. Site-directed mutagenesis studies suggest that the amino acid substitution in the middle of the alphaI-helix (Pro52 for SIB1 RNase HI and Ala52 for E.coli RNase HI) partly accounts for the difference in the stability and activity between SIB1 and E.coli RNases HI.  相似文献   

20.
1. A precursor to small stable RNA, 10Sa RNA, accumulates in large amounts in a temperature sensitive RNase E mutant at non-permissive temperatures, and somewhat in an rnc (RNase III-) mutant, but not in an RNase P- mutant (rnp) or wild type E. coli cells. 2. Since p10Sa RNA was not processed by purified RNase E and III in customary assay conditions, we purified p10Sa RNA processing activity about 700-fold from wild type E. coli cells. 3. Processing of p10Sa RNA by this enzyme shows an absolute requirement for a divalent cation with a strong preference for Mn2+ over Mg2+. Other divalent cations could not replace Mn2+. 4. Monovalent cations (NH+4, Na+, K+) at a concentration of 20 mM stimulated the processing of p10Sa RNA and a temperature of 37 degrees C and pH range of 6.8-8.2 were found to be optimal. 5. The enzyme retained half of its p10Sa RNA processing activity after 30 min incubation at 50 degrees C. 6. Further characterization of this activity indicated that it is RNase III. 7. To further confirm that the p10Sa RNA processing activity is RNase III, we overexpressed the RNase III gene in an E. coli cells that lacks RNase III activity (rnc mutant) and RNase III was purified using one affinity column, agarose.poly(I).poly(C). 8. This RNase III preparation processed p10Sa RNA in a similar way as observed using the p10Sa RNA processing activity purified from wild type E. coli cells, confirming that the first step of p10Sa RNA processing is carried out by RNase III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号