首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We often assume the intrinsic value of a food or habitat is similar for individuals of a species and above a certain threshold density more profitable foods should always be preferred over less profitable foods. Nevertheless, individual herbivores differ in their preferences for foods due in part to experience, and experience in variable environments is variable. In this report, we show that how sheep learned about their foraging environment was crucial to the development of their dietary habits, and that experience with foods that contained plant secondary metabolites (PSM) markedly enhanced their use of PSM-containing foods, even when familiar, nutritious alternatives were available ad libitum. Lambs who learned to eat foods that contained either tannins, terpenes, or oxalates ate more when they could select two of the foods offered simultaneously (tannins-terpenes, tannins-oxalates, or terpenes-oxalates) than when they were offered only one food. Lambs offered foods containing all three toxins ate more than lambs offered two of the toxins, and their intake was comparable to lambs offered the food that contained no toxins. Experience and the availability of nutritious alternatives both influenced food choice when the preferences of lambs with 3 months’ experience mixing tannin, terpenes, and oxalates were compared with lambs naive to the toxin-containing foods. During these studies, all lambs were offered five foods, two of them familiar to all of the lambs (ground alfalfa and a 50:50 mix of ground alfalfa:ground barley) and three of them familiar only to experienced lambs (a ground ration containing either tannins, terpenes, or oxalates). Half of the lambs were offered the familiar foods ad libitum, while half of the lambs were offered only 200 g of each familiar food daily. Throughout the study, naive lambs ate much less of the foods with toxins if they had ad libitum as opposed to restricted access to the nutritious alternatives (66 vs 549 g d−1). Experienced lambs also ate less of the foods with toxins if they had ad libitum, as opposed to restricted, access to the nutritious alternatives (809 vs 1497 g d−1). In both cases, however, lambs with experience ate remarkably more than naive lambs of the foods containing the toxins, whether access to the alfalfa-barley alternatives was ad libitum (811 vs 71 g d−1) or restricted (1509 vs 607 g d−1). These differences in food preferences and intake persisted during trials 8 months later. Plant communities offer a diverse matrix of biochemicals to herbivores, which may produce an array of interactions not accounted for by the traditional approach of studying nutrients and plant secondary metabolites (PSM) in isolation. How herbivores experience nutrient-PSM interactions may influence defoliation patterns and the potential for plant survival within plant communities. Thus, learning to mix foods that differ in kinds and concentrations of nutrients and PSM can enhance diet breadth and promote more uniform use of all plants in a community, which can influence the structure and function of ecosystems. Conversely, lack of experience learning to eat a variety of foods can diminish diet breadth and result in less uniform use of plants in a community.  相似文献   

2.
Avoiding toxins in food is as important as obtaining nutrition. Conditioned food aversions have been studied in animals as diverse as nematodes and humans [1, 2], but the neural signaling mechanisms underlying this form of learning have been difficult to pinpoint. Honeybees quickly learn to associate floral cues with food [3], a trait that makes them an excellent model organism for studying the neural mechanisms of learning and memory. Here we show that honeybees not only detect toxins but can also learn to associate odors with both the taste of toxins and the postingestive consequences of consuming them. We found that two distinct monoaminergic pathways mediate learned food aversions in the honeybee. As for other insect species conditioned with salt or electric shock reinforcers [4-7], learned avoidances of odors paired with bad-tasting toxins are mediated by dopamine. Our experiments are the first to identify a second, postingestive pathway for learned olfactory aversions that involves serotonin. This second pathway may represent an ancient mechanism for food aversion learning conserved across animal lineages.  相似文献   

3.
Wind tunnel experiments were conducted to determine roles of odor learning in food foraging of the larval parasitoid,Microplitis croceipes (Hymenoptera: Braconidae). Females that had neither fed on sucrose water nor experienced any odor and females that had experienced an odor without feeding failed to respond to any odors in a wind tunnel. Most of the females that had fed without an odor also did not respond to odors. However, most of the females that had experienced an odor during feeding on sucrose water flew to the odor. These results indicate that when females experience an odor during feeding, they learn to associate the odor with food and subsequently respond to the odor. As age of females increased, their response to an experienced odor increased, peaked 2 to 5 days after emergence, and then decreased. With an increasing number of odor experiences while feeding, accuracy of females choosing the experienced odor increased. Females that experienced an odor while feeding three to five times chose the experienced odor 90% of the time. When females experienced an odor while feeding five times, the memory of food associated odor lasted at least 2 days. When they experienced food with two odors successively, they could memorize both odors, and multiple experiences did not cause memory interference. Even when females had learned a food-associated odor, their response to the learned odor ceased after several visits on patches containing the odor but no food. Such negative experience may cause switching of food searching to new odors by females.  相似文献   

4.
Interactions among nutrients and secondary compounds in plants can influence the kinds and amounts of different forages herbivores ingest, but little is known about how the sequence of plant ingestion may influence these interactions. The physiological pathways and rates of nutrient and secondary compound metabolism in the body influence food intake by herbivores. On this basis, we predicted the sequence in which foods that vary in nutrients and secondary compounds are ingested would influence food intake and preference. In a 2 × 2 factorial experiment, we evaluated the relationship between the sequence of presenting two foods, one with terpenes and the other with tannins, and the time when lambs ate a nutritious food (alfalfa–barley), either before or after eating foods with tannins and terpenes. When alfalfa–barley was fed prior to the terpenes, intake of the terpene-containing food was lower than when alfalfa–barley was fed after terpenes (P < 0.05). The sequence when alfalfa–barley was fed did not influence intake of the tannin-containing food (P > 0.10). Lambs ate more total foods with terpenes + tannins when fed tannins → terpenes → alfalfa/barley than when fed alfalfa/barley → tannins → terpenes (P < 0.10). During preference tests, when lambs were offered all three foods simultaneously, lambs previously conditioned with the sequence tannins → terpenes → alfalfa–barley preferred alfalfa–barley > terpenes > tannins (P < 0.05), whereas lambs in other treatments preferred alfalfa–barley > tannins > terpenes (P < 0.05). During preference tests when lambs were fed only foods with secondary compounds, lambs previously conditioned with the sequence tannins → terpenes → alfalfa–barley showed equal preference for foods with tannins and terpenes, whereas lambs in other treatments preferred food with tannins > terpenes (P < 0.05–0.10). All of these results are consistent with the hypothesis that the sequence in which foods are consumed affects both food intake and preference. Understanding the importance of sequencing when herbivores consume foods that vary in nutrients and secondary compounds may help managers create new grazing strategies that include sequential foraging patterns to optimize food intake and more evenly use all plant species in a community, a practice used by herders in France.  相似文献   

5.
What cues support social influences on food preference in tufted capuchins? Although vision is important for food discrimination, we hypothesized that olfactory cues might also be involved. In Experiment 1, we assessed whether semolina flavored with a novel odor and eaten by a demonstrator, elicits more interest than semolina flavored with a familiar odor and eaten by a demonstrator, and to what extent the observer's interest towards the demonstrator was elicited by the food itself or by the odor impregnating the demonstrator's oral area. In Experiment 2, we investigated whether having encountered a novel odor in a social context increases the observer's subsequent consumption of semolina carrying this odor versus semolina carrying another novel odor previously encountered in a non-social context. We tested 15 demonstrator-observer pairs. Eight observers were offspring of the demonstrator; 7 observers were not offspring of the demonstrator. Offspring (but not non-offspring) expressed interest towards the demonstrator's food significantly more when the odor was novel than when it was familiar. Offspring (but not non-offspring) were more interested when the demonstrator's food was present than when only its odor was available. Finally, having encountered the novel odor in the social context did not lead to greater consumption. Our findings demonstrate that in closely bonded pairs, foods carrying novel odors elicit interest, though it is prompted mainly by the food itself. In contrast with other macrosmatic mammalian species, capuchin consumption of a food whose odor was previously encountered in a social context was not greater than that of a food whose odor was previously encountered when alone.  相似文献   

6.
Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) learns odors in association with both hosts and food. The food‐associated ‘seeking’ behavior of M. croceipes was investigated under various training protocols utilizing the conditioning odor, 3‐octanone. We investigated the effects of odor training, or its lack, training duration, training frequency, time elapsed after training, wasp hunger state, and training reinforcement, on the food‐seeking responses of M. croceipes females. We found that odor‐trained females show strong food seeking responses, whereas non‐odor‐trained females do not respond to the odor, and that a single 10 s association with the odor whilst feeding on sugar water subsequently conditioned the wasps to exhibiting significant responses to it. Increases in training time to more than 10 s did not improve their responses. Repetition of the food–odor associations increased a wasp's recall, as well as its response over time, compared to a single exposure. Repeated exposure to the learned odor in the absence of a food reward decreased the responses of less hungry individuals. However, the level of response increased significantly following a single reinforcement with the food–odor association. Understanding the factors that influence learning in parasitoids can enhance our ability to predict their foraging behavior, and opens up avenues for the development of effective biological detectors.  相似文献   

7.
Two species of crayfish were tested in the laboratory to evaluate the hypothesis that successful invaders use a broader range of chemical information than do displaced native species. The invasive species Orconectes rusticus reduced responses to food odors just as strongly when heterospecific (O. propinquus, O. virilis) alarm odors were introduced with food odors as they did when conspecific alarm odors were introduced at the same time as food odors. Individuals of the displaced native species, O. propinquus, did not reduce feeding responses as strongly when O. virilis alarm odor was introduced as with conspecific alarm odor or O. rusticus alarm odor. These results are consistent with the hypothesis that successful invaders use a wider range of information about their environment than do displaced native species.  相似文献   

8.
Although female parasitic wasps are known to learn to associate odors with hosts and food, the ability of males to learn and detect odors has been neglected. We conducted laboratory experiments to compare the detection ability of learned odors between males and females in the larval parasitoid Microplitis croceipes (Cresson) (Hymenoptera: Braconidae). We first conditioned males and females to associate sucrose water with methyl benzoate, 3‐octanone, or cyclohexanone, and then observed their behavior toward various concentrations (40 ng l?1?4 mg l?1) of the trained odors. Conditioned male wasps responded as well as female wasps to various concentrations of the three odors. Response times by wasps to these three odors were not significantly different between sexes. For the three odors, response times of both sexes were longer at the intermediate concentrations (40–400 µg l?1) than the higher or lower concentrations. The present study suggests that M. croceipes males can learn and respond to the three chemicals tested as well as the females, and conditioned males are as sensitive to learned odors as conditioned females. By using their sensitive learning and odor‐detection capabilities, M. croceipes males could search for food sources as efficiently as females under natural conditions.  相似文献   

9.
Herbivorous insects may benefit from avoiding the smell produced by phytopathogens infecting plant host tissue if the infected tissue reduces insect fitness. However, in many cases the same species of phytopathogen can also infect host plant tissues that do not directly affect herbivore fitness. Thus, insects may benefit from differentiating between pathogen odors emanating from food and nonfood tissues. This is based on the hypothesis that unnecessarily staying attentive to pathogen odor from nonfood tissue may incur opportunity costs associated with not responding to other important survival functions. In this study adults of Drosophila suzukii Matsumura, an invasive larval frugivore, showed reduced attraction to the odor of raspberry fruit, a food tissue, when infected with Botrytis cinerea Pers., a ubiquitous phytopathogen, in favor of odors of uninfected raspberry fruit. Moreover, D. suzukii oviposited fewer eggs on infected raspberry fruit relative to uninfected raspberry fruit. Larval survival and adult size after eclosion were significantly reduced when reared on B. cinerea‐infected raspberry relative to uninfected fruit. Interestingly, when the behavioral choice experiment was repeated using Botrytis‐infected vs. ‐uninfected strawberry leaves, a nonfood tissue, in combination with fresh raspberry fruit, odor from B. cinerea‐infected leaves did not reduce D. suzukii attraction to raspberries relative to raspberries with uninfected leaves. These behavioral results illustrate the important role context can play in odor‐mediated interactions between insects, plants and microbes. We discuss implications of our findings for developing a repellent that can be useful for the management of D. suzukii.  相似文献   

10.
Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non‐GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups’ number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non‐GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non‐GM food webs for herbivores were observed. Food webs parameterized based on 2‐year in‐field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non‐target organisms.  相似文献   

11.
Predation is a strong selective force, and prey species may show specific adaptations that allow recognition, avoidance, and defense against predators. Facing a situation of predatory risk, anxiety constitutes a reaction of adaptive value, allowing to evaluate the potential risk of this encounter as well as to generate a physiological and behavioral response. Previous studies in the subterranean rodent Ctenomys talarum revealed that exposure to predator odors (urine or fur) generates an anxiety state and induces behavioral changes. However, no differences between the responses generated by both odor sources were observed, although fur odors may indicate a higher level of predatory immanence. Therefore, the aim of this study was to evaluate the behavioral and physiological responses of C. talarum to different intensities of predator odors (urine and fur) and to the repeated exposition to the same odorous stimulus. When comparing the highest behavioral effects elicited by both predatory odors on C. talarum, our study supports the assumption that fur odors are more anxiogenic than urine, while the former provoked significant changes in the distance traveled, the number of arm entries and time in transparent arms in the elevated plus maze; cat urine only caused slight changes on those behavioral parameters. Furthermore, we also found that the intensity of natural predator odor presented to tuco‐tucos has a role on the appearance of defensive behaviors, although an amount‐dependent relationship between predator odor and anxiety levels was not observed. Finally, while individuals exposed for 1 day to fur odor displayed an evident anxiety state, those exposed repeatedly for 5 consecutive days did not differ with the control group in their behavioral response, indicating a clear habituation to the predatory cue. In our intensity and habituation experiments, we did not find differences in the measured physiological parameters among control individuals, exposed to different cues intensity (urine and fur odor) and exposed only once or for 5 days to fur odor. These results provide valuable evidence that the types of predatory odor, along with the frequency of exposition, are important determinants of the appearance, strength, and extinction of defensive behaviors in the subterranean rodent C. talarum.  相似文献   

12.
Bathyplectes curculionis (Thomson) is an introduced natural enemy of the alfalfa weevil in North America. The wasp requires carbohydrate foods as an adult. Adult wasps have increased longevity and fecundity when provided access to pea aphid, Acyrthosiphon pisum (Harris), honeydew in the laboratory, and adults respond positively to the presence of pea aphids in alfalfa fields. However, it is unknown how these wasps find aphid honeydew in the field. In a series of Y-tube olfactometer experiments, we evaluated the response of naïve and experienced adult female B. curculionis to odors from pea aphids, alfalfa, and pea aphids on alfalfa. Naïve adult females did not respond positively to pea aphid odor even when hungry. But adult females were able to learn aphid odor, and the mechanism of learning appears to be associative rather than by sensitization. Naïve females also showed no preference for alfalfa odor but learned alfalfa odor through sensitization. The wasps did not distinguish between alfalfa with aphids and alfalfa without aphids, even after exposure to aphids or alfalfa with aphids. However, they preferred pea aphid odor to alfalfa odor after a feeding experience in the presence of pea aphid odors. But after exposure to mixed odors of aphids and alfalfa while feeding, B. curculionis females preferred the odor of alfalfa to the odor of pea aphids. These results suggest that alfalfa odors mask or override aphid odors when aphids are associated with alfalfa (as happens naturally), thus interfering with the wasp's ability to respond to learned aphid odors. Therefore, although the wasps are capable of learning to find pea aphids and their honeydew in a simplified laboratory setting, it appears unlikely that they do so in the field.  相似文献   

13.
An animal's ability to select a diet depends on forage availability, the density of herbivores, and the allocation of forage resources. We hypothesized that the temporal and spatial availability of forages in sagebrush steppe vegetation both influence food selection and may encourage lambs to learn to use sagebrush, a shrub that contains high levels of terpenes that limit food intake. We conducted a field study with three treatments of 20 lambs each. Forage resources were manipulated by restricting grazing areas. Lambs in treatment H grazed at a high stock density, whereas lambs in treatment L grazed at a low stock density; both groups were moved to fresh pasture daily. Lambs in treatment H3 had three times the area of treatment H, but they were moved every 3 days, making the total area grazed by H and H3 equal, but with a different temporal allocation of forage. Scan sampling was used to record the incidence of consumption among sagebrush and understory herbs. During 24 days of conditioning, stock density and temporal patterns of forage allocation both influenced the behavior of lambs. Lambs in H spent more time foraging on sagebrush (25%) than lambs in H3 (16%), and lambs in both H and H3 spent more time foraging on sagebrush than lambs in L (1%) (P < 0.05). For lambs in H3, foraging on sagebrush was cyclic and depended on the daily availability of herbs. Use of sagebrush, expressed as a percentage of total foraging time, was <1% for day 1, 13% for day 2, and 37% for day 3 (P < 0.0001). Importantly, use of sagebrush by H3 and H increased steadily as the trial progressed, whereas use of sagebrush by L was consistently low (P < 0.05). Following conditioning, when lambs were tested at low stock densities during preference test 1, use of sagebrush did not differ by groups, but at higher stock densities in preference test 2, their use of sagebrush varied by treatments: H > H3 > L (P < 0.005). Thus, the availability of alternative foods, manipulated through animal density and the temporal allocation of those resources, both affected how readily lambs learned to use sagebrush.  相似文献   

14.
Laboratory experiments were conducted to determine the role of learning in olfactory host searching by the ichneumonid pupal parasitoid, Pimpla luctuosa Smith. Females learned to associate novel odors such as vanilla and strawberry with hosts when they oviposited in at least several hosts with the odors. Repeated experiences of hosts with an odor increased the response of the experienced odor, and females that had experienced host odor seven times responded to the experienced odors 90% of the time. Although the response by females to a learned odor gradually decreased with increasing host-deprivation time, 60% of the females that had experienced host odor 7 days earlier still responded to the experienced odor. Females also learned two separate odors associated with hosts at a time and responded to both odors without a preference for one odor over the other. When trained two separate odors with hosts, females learned the second odor more quickly than the first odor. After females experienced several stings in simulated hosts with the previously learned odor, they ceased to respond to the learned odor, suggesting that repeated unrewarding experiences cause females to cease to respond to the learned odors.  相似文献   

15.
Although the neural control of behavior has been extensively studied in gastropods, basic gaps remain in our understanding of how sensory stimuli are processed. In particular, there is only patchy evidence regarding the functional roles of sense organs and the extensive peripheral nervous system they contain. Our goal was to use extracellular electrophysiological recordings to confirm the chemosensory role of the tentacles in the great pond snail, Lymnaea stagnalis. Employing a special twin-channel suction electrode to improve signal-to-noise ratio, we applied three food odors (derived from earthworm-based food pellets, algae-based pellets, and fresh lettuce) to a reduced preparation of the tentacle while recording neuronal activity in the tentacle nerve. Responses were assessed by comparing average spike frequencies produced in response to saline flow with and without odors. We report stronger neuronal responses to earthworm-based food odors and weaker responses to algae-based food odors. There were no clear neuronal responses produced when lettuce food odor or control saline was applied to the tentacle. Overall, our results provide strong evidence for the chemosensory role of the tentacles in navigation behavior by L. stagnalis. Although it is unclear whether the differences in neuronal responses to different odors are a technical consequence of our recording system or a genuine feature of the snail sensory system, these results are a useful foundation for further study of peripheral nervous system function in gastropods.  相似文献   

16.
Deceptive flowers from several plant species emit odors that mimic oviposition cues and attract female insects seeking for a laying site. Helicodiceros muscivorus is a species that emits an odor mimicking the foul smell of rotting meat and thereby attracts blowflies that usually oviposit on carcasses but are deceived into pollinating the plant. Thus, H. muscivorus is a striking case of pollination by brood‐site deception. The Balearic lizard, Podarcis lilfordi, exhibits remarkable interactions with dead horse arum. Balearic lizards, which sometimes forage on carcasses, are attracted to blooming dead horse arum. We showed experimentally that P. lilfordi can detect chemical cues from carcasses on cotton swabs and exhibits elevated tongue‐flick rates to carcass chemical cues compared to control stimuli. Lizards also detected and located hidden carcasses using only airborne chemical cues. The responses of lizards to chemical cues from the spadix of blooming dead horse arum were qualitatively and quantitatively similar to those to carcass odors. Therefore, the decay‐like odor that attracts blowflies for the plant's benefit also attracts lizards. This attraction may initially have been somewhat favorable for lizards that eat blowflies, but slightly unfavorable for plants because the lizards ate some pollinators. We suggest that lizards attracted by odor may have learned later to use the plant for thermoregulation and then consume its fruits, making the association more positive for lizards and benefitted arum by seed dispersal.  相似文献   

17.
The tea green leafhopper, Empoasca vitis (Göthe) (Hemiptera: Cicadellidae), is a serious pest of tea plants. We examined the behavioral responses of E. vitis adults to odors from the shoots of three host plants in a Y‐tube olfactometer with background visual cues. The host plants were tea [Camellia sinensis (L.) Kuntze (Theaceae)], peach [Prunus persica (L.) Siebold & Zucc. (Rosaceae)], and grapevine [Vitis vinifera L. (Vitaceae)]. Volatiles from the shoots were analyzed. Both yellow‐green and gold backgrounds enhanced the olfactory responses of E. vitis adults to tea plant odors, and this enhancement was stronger under a high light intensity. On the yellow‐green background, E. vitis adults significantly preferred the odors from shoots of the three host plants compared with clean air. Moreover, E. vitis adults preferred grapevine odor over the tea plant odor. The volatile blends of the three plant species were distinctly different. Peach plant shoots emitted the greatest amount of volatiles, whereas grapevine shoots released the greatest diversity of compounds. These results provide evidence that background visual cues could enhance the response of E. vitis adults to host‐plant volatiles. The leafhoppers can discern different host odors, suggesting the possibility of using peach plant and grapevine odors to monitor and manage this pest in tea plantations.  相似文献   

18.
Concentrations of nutrients and plant secondary metabolites (PSM) vary temporally and spatially, creating a multidimensional feeding environment. Interactions between nutrients and PSM are poorly understood because research has relied largely on studying the isolated effects of nutrients or PSM on foraging behavior. Nevertheless, their interactions can influence food selection and the dynamics of plant communities. Our objective was to explore how interactions between nutrients and PSM influence food selection. For 7 d, three groups of lambs received intraruminal infusions of three different doses of a PSM (0=Control; low and high) and 2 h later they were offered two foods that contained either low (high in energy) or high (high in protein) protein/energy ratios. The foods were offered 7 d before (baseline) and 7 d after PSM infusions. We conducted five trials each with a different PSM- terpenoids, cyanogenic glycosides, sodium nitrate, quebracho tannin, and lithium chloride. Lambs consistently preferred the food high in energy to the food high in protein, but toxins modified the degree to which this preference was manifest. Terpenoids, nitrate, and lithium chloride depressed intake of the food high in energy. Cyanogenic glycosides had the opposite effect, and at higher doses they depressed intake of the food high in protein. Tannins enhanced intake of the food high in energy at lower doses and they depressed its ingestion at higher doses. Thus, PSM selectively depressed or enhanced intake depending on the macronutrient composition of the foods. These results imply that the probability of a plant being eaten will depend not only on its chemical defenses but also on the quantity and quality of nutrients in the plant and its neighbors, and that the ability of herbivores to learn associations between nutrients and PSM may have a substantial impact on the way herbivores regulate ecosystem processes.  相似文献   

19.
Ruminants eat a variety of foods from different locations in the environment. While water, cover, social interactions, and predators are all likely to influence choice of foraging location, differences in macronutrient content among forages may also cause ruminants to forage in different locations even during a meal. We hypothesized that lambs forage at locations containing foods that complement their basal diet and meet their nutritional needs. Based on this hypothesis, we predicted that lambs (n=12) fed a basal diet low in protein and high in energy would forage where a high-protein food (Food P) was located, and that lambs (n=12) fed a basal diet low in energy and high in protein would forage where a high-energy food (Food E) was located. Food P was a ground mixture of blood meal (50%), grape pomace (30%), and alfalfa (20%) that contained 47% crude protein (CP) and 2.211 Mcal/kg digestible energy (DE). Food E was a ground mixture of cornstarch (50%), grape pomace (30%), and rolled barley (20%) that contained 6% CP and 3.07 Mcal/kg DE. Food P provided 212 g CP/Mcal DE, whereas Food E provided 20 g CP/Mcal DE. Lambs growing at a moderate rate require 179 g CP and 3.95 Mcal DE. During Trial 1, we determined if lambs foraged to correct a nutrient imbalance, and if they preferred a variety of foods (Foods P and E) to only one food at a location (Food P or E). During Trial 2, we determined if nutrient-imbalanced lambs foraged in the location with the food that corrected the imbalance when the location of the foods changed daily. During Trial 3, lambs were offered familiar foods (Foods P and E) at the location furthest - and novel foods (wheat and soybean meal) at the location nearest - the shelter of their pen. During all three trials, lambs foraged most at the location with the food that contained the highest concentration of the macronutrient lacking in their basal diet, but they always ate some of both foods. Lambs did not feed exclusively at the location with a variety of foods (P and E). Rather, they fed at the location nearest the shelter that contained the macronutrient lacking in their diet. As availability of the food with the needed macronutrient declined in one location, lambs moved to the nearest location that had food with the needed macronutrient. When food that complemented their basal diet was moved to a different location, lambs foraged in the new location. Collectively, these results show that lambs challenged by imbalances in energy or protein selected foods and foraging locations that complemented the nutrient content of their macronutrient imbalanced basal diets.  相似文献   

20.
Tetragonisca angustula stingless bees are considered as solitary foragers that lack specific communication strategies. In their orientation towards a food source, these social bees use chemical cues left by co-specifics and the information obtained in previous foraging trips by the association of visual stimuli with the food reward. Here, we investigated their ability to learn the association between odors and reward (sugar solution) and the effect on learning of previous encounters with scented food either inside the hive or during foraging. During food choice experiments, when the odor associated with the food was encountered at the feeding site, the bees’ choice is biased to the same odor afterwards. The same was not the case when scented food was placed inside the nest. We also performed a differential olfactory conditioning of proboscis extension response with this species for the first time. Inexperienced bees did not show significant discrimination levels. However, when they had had already interacted with scented food inside the hive, they were able to learn the association with a specific odor. Possible olfactory information circulation inside the hive and its use in their foraging strategies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号