首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

2.
Abstract Most work on adaptive speciation to date has focused on the role of low hybrid fitness as the force driving reinforcement (the evolution of premating isolation after secondary contact that reduces the likelihood of matings between populations). However, recent theoretical work has shown that postmating, prezygotic incompatibilities may also be important in driving premating isolation. We quantified premating, postmating-prezygotic, and early postzygotic fitness effects in crosses among three populations: Drosophila persimilis, D. pseudoobscura USA (sympatric to D. persimilis ), and D. pseudoobscura Bogotá (allopatric to D. persimilis ). Interspecific matings were more likely to fail when they involved the sympatric populations than when they involved the allopatric populations, consistent with reinforcement. We also found that failure rate in sympatric mating trials depended on whether D. persimilis females were paired with D. pseudoobscura males or the reverse. This asymmetry most likely indicates differences in discrimination against heterospecific males by females. By measuring egg laying rate, fertilization success and hatching success, we also compared components of postmating-prezygotic and early postzygotic isolation. Postmating-prezygotic fitness costs were small and not distinguishable between hetero- and conspecific crosses. Early postzygotic fitness effects due to hatching success differences were also small in between-population crosses. There was, however, a postzygotic fitness effect that may have resulted from an X-linked allele found in one of the two strains of D. pseudoobscura USA. We conclude that the postmating-prezygotic fitness costs we measured probably did not drive premating isolation in these species. Premating isolation is most likely driven in sympatric populations by previously known hybrid male sterility.  相似文献   

3.
The generation of premating isolation given partial or complete postzygotic isolation between populations is termed reinforcement or, in the case of complete isolation, reproductive character displacement. In this study we use computer simulations and a multilocus genetic model to reevaluate the theory of reinforcement. We consider the evolution of female preferences for a male secondary sexual trait. If the populations differ in mean female preference, there is direct selection on the preference for further divergence, which may be augmented by a correlated response to sexual selection on males. Two factors prevent divergence. First, if postzygotic isolation is not complete, gene flow can prevent divergence and lead to a hybrid swarm. This is the usual outcome whenever the average number of breeding adult offspring produced by a hybrid mating is sufficient to replace the parents. Second, one or the other population may become extinct because of the large number of hybrid matings it is involved in. The likelihood of extinction is lowered if population growth rates are high, if hybrids are inviable rather than infertile, or under some conditions when allopatric populations provide immigrants into the contact zone. Provided hybrid fitness is sufficiently low, there is a wide range of genetic and ecological conditions under which reinforcement rather easily occurs, and also a range under which it may occur because of stochastic effects on both the inheritance parameters and the population sizes.  相似文献   

4.
Although reinforcement is ostensibly driven by selection against hybrids, there are often other components in empirical cases and theoretical models of reinforcement that may contribute to premating isolation. One of these components is local adaptation of a trait used in mate choice. I use several different comparisons to assess the roles that local adaptation and selection against hybrids may play in reinforcement models. Both numerical simulations of exact recursion equations and analytical weak selection approximations are employed. I find that selection against hybrids may play a small role in driving preference evolution in a reinforcement model where the mating cue is separate from loci causing hybrid incompatibilities. When females have preferences directly for purebreds of their own population, however, selection against hybrids can play a large role in premating isolation evolution. I present some situations in which this type of selection is likely to exist. This work also illustrates shortfalls of using a weak selection approach to address questions about reinforcement.  相似文献   

5.
Chromosomal inversions are frequently implicated in isolating species. Models have shown how inversions can evolve in the context of postmating isolation. Inversions are also frequently associated with mating preferences, a topic that has not been studied theoretically. Here, we show how inversions can spread by capturing a mating preference locus and one or more loci involved with epistatic incompatibilities. Inversions can be established under broad conditions ranging from near panmixis to nearly complete speciation. These results provide a hypothesis to explain the growing number of examples of inversions associated with premating isolating mechanisms.  相似文献   

6.
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.  相似文献   

7.
Divergence and reproductive isolation in the early stages of speciation   总被引:2,自引:0,他引:2  
Tregenza T 《Genetica》2002,116(2-3):291-300
To understand speciation we need to identify the factors causing divergence between natural populations. The traditional approach to gaining such insights has been to focus on a particular theory and ask whether observed patterns of reproductive isolation between populations or species are consistent with the hypothesis in question. However, such studies are few and they do not allow us to compare between hypotheses, so often we cannot determine the relative contribution to divergence of different potential factors. Here, I describe a study of patterns of phenotypic divergence and premating and postmating isolation between populations of the grasshopper Chorthippus parallelus. Information on the phylogeographic relationships of the populations means that a priori predictions from existing hypotheses for the evolution of reproductive isolation can be compared with observations. I assess the relative contributions to premating isolation, postmating isolation and phenotypic divergence of long periods of allopatry, adaptation to different environments and processes associated with colonisation (such as population bottlenecks). Likelihood analysis reveals that long periods of allopatry in glacial refugia are associated with postmating reproductive isolation, but not premating isolation, which is more strongly associated with colonisation. Neither premating nor postmating isolation is higher between populations differing in potential environmental selection pressures. There are only weak correlations between patterns of genetic divergence and phenotypic divergence and no correlation between premating and postmating isolation. This suggests that the potential of a taxon to exercise mate choice may affect the types of factor that promote speciation in that group. I discuss the advantages and disadvantages of the general approach of simultaneously testing competing hypotheses for the evolution of reproductive isolation.  相似文献   

8.
J. K. Kelly  MAF. Noor 《Genetics》1996,143(3):1485-1497
Reinforcement is an increase in premating reproductive isolation between taxa resulting from selection against hybrids. We present a model of reinforcement with a novel type of selection on female mating behavior. Previous models of reinforcement have focused on the divergence of female mating preferences between nascent species. We suggest that an increase in the level of female mating discrimination can yield reinforcement without further divergence of either male characters or female preferences. This model indicates that selection on mating discrimination is a viable mechanism for reinforcement and may allow speciation under less stringent conditions than selection on female preference. This model also incorporates empirical results from genetic studies of hybrid fitness determination in Drosophila species. We find that the details of inheritance, which include sex-linked transmission, sex-limited fertility reduction, and X-autosome epistasis, have important effects on the likelihood of reinforcement. In particular, X-autosome epistasis for hybrid fitness determination facilitates reinforcement when hybrid fertility reduction occurs in males, but hinders the process when it occurs in females. HALDANE's rule indicates that hybrid sterility will generally evolve in males prior to females within nascent species. Thus, HALDANE's rule and X-autosome epistasis provide conditions that are surprisingly favorable for reinforcement in Drosophila.  相似文献   

9.
We study the form of the clines in a female mating preference and male display trait using simulations of a hybrid zone. Allopatric populations of two species are connected by demes in a stepping stone arrangement. Results show that reproductive character displacement (a pattern of increased prezygotic isolation in sympatry compared with allopatry) may or may not result when there is reinforcement (defined here as the strengthening of prezygotic isolation as a result of selection against hybrids, relative to the amount of prezygotic isolation present when hybrids are not selected against). Further, reproductive character displacement of the preference may or may not occur when it occurs in the male display. We conclude that the absence of reproductive character displacement is not evidence against the operation of reinforcement.  相似文献   

10.
Wolbachia is a widespread group of intracellular bacteria commonly found in arthropods. In many insect species, Wolbachia induce a cytoplasmic mating incompatibility (CI). If different Wolbachia infections occur in the same host species, bidirectional CI is often induced. Bidirectional CI acts as a postzygotic isolation mechanism if parapatric host populations are infected with different Wolbachia strains. Therefore, it has been suggested that Wolbachia could promote speciation in their hosts. In this article we investigate theoretically whether Wolbachia-induced bidirectional CI selects for premating isolation and therefore reinforces genetic divergence between parapatric host populations. To achieve this we combined models for Wolbachia dynamics with a well-studied reinforcement model. This new model allows us to compare the effect of bidirectional CI on the evolution of female mating preferences with a situation in which postzygotic isolation is caused by nuclear genetic incompatibilities (NI). We distinguish between nuclear incompatibilities caused by two loci with epistatic interactions, and a single locus with incompatibility among heterozygotes in the diploid phase. Our main findings are: (1) bidirectional CI and single locus NI select for premating isolation with a higher speed and for a wider parameter range than epistatic NI; (2) under certain parameter values, runaway sexual selection leads to the increase of an introduced female preference allele and fixation of its preferred male trait allele in both populations, whereas under others it leads to divergence in the two populations in preference and trait alleles; and (3) bidirectional CI and single locus NI can stably persist up to migration rates that are two times higher than seen for epistatic NI. The latter finding is important because the speed with which mutants at the preference locus spread increases exponentially with the migration rate. In summary, our results show that bidirectional CI selects for rapid premating isolation and so generally support the view that Wolbachia can promote speciation in their hosts.  相似文献   

11.
Recent years have seen a resurgence of interest in the process of speciation but few studies have elucidated the mechanisms either driving or constraining the evolution of reproductive isolation. In theory, the direct effects of reinforcing selection for increased mating discrimination where interbreeding produces hybrid offspring with low fitness and the indirect effects of adaptation to different environments can both promote speciation. Conversely, high levels of homogenizing gene flow can counteract the forces of selection. We demonstrate the opposing effects of reinforcing selection and gene flow in Timema cristinae walking-stick insects. The magnitude of female mating discrimination against males from other populations is greatest when migration rates between populations adapted to alternate host plants are high enough to allow the evolution of reinforcement, but low enough to prevent gene flow from eroding adaptive divergence in mate choice. Moreover, reproductive isolation is strongest under the combined effects of reinforcement and adaptation to alternate host plants. Our findings demonstrate the joint effects of reinforcement, ecological adaptation and gene flow on progress towards speciation in the wild.  相似文献   

12.
Hurt CR  Farzin M  Hedrick PW 《Genetics》2005,171(2):655-662
The timing and pattern of reproductive barrier formation in allopatric populations has received much less attention than the accumulation of reproductive barriers in sympatry. The theory of allopatric speciation suggests that reproductive barriers evolve simply as by-products of overall genetic divergence. However, observations of enhanced premating barriers in allopatric populations suggest that sexual selection driven by intraspecific competition for mates may enhance species-specific signals and accelerate the speciation process. In a previous series of laboratory trials, we examined the strength of premating and postmating barriers in an allopatric species pair of the endangered Sonoran topminnow, Poeciliopsis occidentalis and P. sonoriensis. Behavioral observations provided evidence of asymmetrical assortative mating, while reduced brood sizes and male-biased F(1) sex ratios suggest postmating incompatibilities. Here we examine the combined effects of premating and postmating barriers on the genetic makeup of mixed populations, using cytonuclear genotype frequencies of first- and second-generation offspring. Observed genotype frequencies strongly reflect the directional assortative mating observed in behavioral trials, illustrating how isolating barriers that act earlier in the reproductive cycle will have a greater effect on total reproductive isolation and may be more important to speciation than subsequent postmating reproductive barriers.  相似文献   

13.
The unique aspects of speciation and divergence in peripheral populations have long sparked much research. Unidirectional migration, received by some peripheral populations, can hinder the evolution of distinct differences from their founding populations. Here, we explore the effects that sexual selection, long hypothesized to drive the divergence of distinct traits used in mate choice, can play in the evolution of such traits in a partially isolated peripheral population. Using population genetic continent‐island models, we show that with phenotype matching, sexual selection increases the frequency of an island‐specific mating trait only when female preferences are of intermediate strength. We identify regions of preference strength for which sexual selection can instead cause an island‐specific trait to be lost, even when it would have otherwise been maintained at migration‐selection balance. When there are instead separate preference and trait loci, we find that sexual selection can lead to low trait frequencies or trait loss when female preferences are weak to intermediate, but that sexual selection can increase trait frequencies when preferences are strong. We also show that novel preference strengths almost universally cannot increase, under either mating mechanism, precluding the evolution of premating isolation in peripheral populations at the early stages of species divergence.  相似文献   

14.
A large number of mathematical models have been developed that show how natural and sexual selection can cause prezygotic isolation to evolve. This article attempts to unify this literature by identifying five major elements that determine the outcome of speciation caused by selection: a form of disruptive selection, a form of isolating mechanism (assortment or a mating preference), a way to transmit the force of disruptive selection to the isolating mechanism (direct selection or indirect selection), a genetic basis for increased isolation (a one- or two-allele mechanism), and an initial condition (high or low initial divergence). We show that the geographical context of speciation (allopatry vs. sympatry) can be viewed as a form of assortative mating. These five elements appear to operate largely independently of each other and can be used to make generalizations about when speciation is most likely to happen. This provides a framework for interpreting results from laboratory experiments, which are found to agree generally with theoretical predictions about conditions that are favorable to the evolution of prezygotic isolation.  相似文献   

15.
The nascent stages of speciation start with the emergence of sexual isolation. Understanding the influence of reproductive barriers in this evolutionary process is an ongoing effort. We present a study of Drosophila melanogaster admixed populations from the southeast United States and the Caribbean islands known to be a secondary contact zone of European‐ and African‐derived populations undergoing incipient sexual isolation. The existence of premating reproductive barriers has been previously established, but these types of barriers are not the only source shaping sexual isolation. To assess the influence of postmating barriers, we investigated putative postmating barriers of female remating and egg‐laying behavior, as well as hatchability of eggs laid and female longevity after mating. In the central region of our putative hybrid zone of American and Caribbean populations, we observed lower hatchability of eggs laid accompanied by increased resistance to harm after mating to less‐related males. These results illustrate that postmating reproductive barriers act alongside premating barriers and genetic admixture such as hybrid incompatibilities and influence early phases of sexual isolation.  相似文献   

16.
Speciation is characterized by the evolution of reproductive isolation between two groups of organisms. Understanding the process of speciation requires the quantification of barriers to reproductive isolation, dissection of the genetic mechanisms that contribute to those barriers and determination of the forces driving the evolution of those barriers. Through a comprehensive analysis involving 19 pairs of plant taxa, we assessed the strength and patterns of asymmetry of multiple prezygotic and postzygotic reproductive isolating barriers. We then reviewed contemporary knowledge of the genetic architecture of reproductive isolation and the relative role of chromosomal and genic factors in intrinsic postzygotic isolation. On average, we found that prezygotic isolation is approximately twice as strong as postzygotic isolation, and that postmating barriers are approximately three times more asymmetrical in their action than premating barriers. Barriers involve a variable number of loci, and chromosomal rearrangements may have a limited direct role in reproductive isolation in plants. Future research should aim to understand the relationship between particular genetic loci and the magnitude of their effect on reproductive isolation in nature, the geographical scale at which plant speciation occurs, and the role of different evolutionary forces in the speciation process.  相似文献   

17.
Fisherian and Wrightian theories of speciation   总被引:1,自引:0,他引:1  
R Lande 《Génome》1989,31(1):221-227
Fisher's theory of sexual selection, Wright's shifting-balance theory, and recent models based on them are reviewed as mechanisms of animal speciation. The joint evolution of mating preferences and secondary sexual characters can cause rapid nonadaptive phenotypic divergence and premating isolation between geographically separated populations, or along a cline. Extensive comparative data on Drosophila species support the suggestion of R. A. Fisher and T. Dobzhansky that the evolution of mating preferences can reinforce partial postmating isolation between sympatric populations. The interaction of natural selection and random genetic drift in local populations with a small effective size can produce a rapid transition between relatively stable phenotypes separated by an adaptive valley, or between chromosomal rearrangements with a heterozygote disadvantage. Large demographic fluctuations, such as frequent random local extinction and colonization, are required for the rapid spread of new adaptations (or karyotypes) when intermediate phenotypes (or rearrangement heterozygotes) are selected against.  相似文献   

18.
Sved JA 《Genetics》1981,97(1):197-215
It is proposed that mating behavior is normally determined by independent genetic systems in the male and female. A specific model is put forward in which mating behavior is determined by additive gene contributions in both sexes, and the strength of mating attraction is maximized when mating "scores" in the two sexes are equalized. This type of model, which may be described as a "facilitation" model, is related to models proposed by a number of authors. It is pointed out that a second class of models exists, "avoidance" models, and that these, although less tractable analytically, could be more realistic.-An organism is assumed to be divided into two strains, and selection is introduced through lethality or sterility of the hybrid (postmating isolation). The selective tendency for divergence of mating behavior in one sex is then shown to be proportional to the amount of divergence that already exists in the opposite sex, multiplied by a quantity that can be described as the heritability of mating attraction. The situation in which no initial divergence exists in either sex constitutes an equilibrium that is unstable, but one that requires substantial deviations before any selective progress can be made. Thus, the evolution of premating isolation to reinforce postmating isolation may be an inefficient process. The process would occur much more efficiently if some initial chance divergence in mating behavior occurred during the period in which postmating isolation evolved.  相似文献   

19.
Ecological speciation studies have more thoroughly addressed premating than postmating reproductive isolation. This study examines multiple postmating barriers between host forms of Neochlamisus bebbianae leaf beetles that specialize on Acer and Salix trees. We demonstrate cryptic isolation and reduced hybrid fitness via controlled matings of these host forms. These findings reveal host-associated postmating isolation, although a nonecological, 'intrinsic' basis for these patterns cannot be ruled out. Host preference and performance results among cross types further suggest sex-linked maternal effects on these traits, whereas family effects indicate their genetic basis and associated variation. Genes of major effect appear to influence these traits. Together with previous findings of premating isolation and adaptive differentiation in sympatry, our results meet many assumptions of 'speciation with gene flow' models. Here, such gene flow is likely asymmetric, with consequences for the dynamics of future ecological divergence and potential ecological speciation of these host forms.  相似文献   

20.
We test the relative rates of evolution of pre- and postzygotic reproductive isolation using eight populations of the sexually dimorphic stalk-eyed flies Cyrtodiopsis dalmanni and C. whitei. Flies from these populations exhibit few morphological differences yet experience strong sexual selection on male eyestalks. To measure reproductive isolation we housed one male and three female flies from within and between these populations in replicate cages and then recorded mating behavior, sperm transfer, progeny production, and hybrid fertility. Using a phylogeny based on partial sequences of two mitochondrial genes, we found that premating isolation, postmating isolation prior to hybrid eclosion, and female hybrid sterility evolve gradually with respect to mitochondrial DNA sequence divergence. In contrast, male hybrid sterility evolves much more rapidly-at least twice as fast as any other form of reproductive isolation. Hybrid sterility, therefore, obeys Haldane's rule. Although some brood sex ratios were female biased, average brood sex ratio did not covary with genetic distance, as would be expected if hybrid inviability obeyed Haldane's rule. The likelihood that forces including sexual selection and intra- and intergenomic conflict may have contributed to these patterns is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号