首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T Matsuda  J R Cooper 《Biochemistry》1983,22(9):2209-2213
Since one of the electrophysiological effects of pyrithiamin, an antimetabolite of thiamin, suggested an interference with sodium pump mechanisms, the effect of pyrithiamin on Na+,K+-ATPase was investigated. We found that whereas preincubation of the antimetabolite with nonneuronal preparations of Na+,K+-ATPase produced only minimal inhibition, the enzyme derived from brain preparations was markedly inhibited. This inhibition could be prevented by thiamin but not reversed. The kinetic study showed that pyrithiamin acts in a noncompetitive manner with respect to the activation of the enzyme by ATP, Na+, and K+. Pyrithiamin inhibited Na+-dependent phosphorylation and K+-stimulated phosphatase as well as ouabain binding, and these inhibitions were parallel with that of the overall Na+,K+-ATPase reaction. In addition, the antimetabolite caused a significant change in the turbidity of the enzyme suspension. The results suggest that pyrithiamin may induce a structural change of the enzyme complex.  相似文献   

2.
W S Craig 《Biochemistry》1982,21(22):5707-5717
The distribution of sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase] among the various oligomeric forms present in a given solution is assessed unambiguously by cross-linking with glutaraldehyde. Purified enzyme dissolved in a solution of a nonionic detergent, octaethylene glycol dodecyl ether, remains dispersed and unaggregated after removal of the bulk of the detergent. Increases in the aggregation of the enzyme, which have been previously observed upon the addition of substrates to such a solution, are found to be due to changes in ionic strength rather than a consequence of the initiation of turnover. Furthermore, conditions are described that produce solutions containing stable, enzymatically active mixtures of the smaller oligomers of the asymmetric unit, alpha beta. Cross-linking by glutaraldehyde while the enzyme is turning over demonstrates that at least one of these oligomers is responsible for the observed enzymatic activity. A determination of which oligomers are present in each fraction from a glycerol gradient demonstrates that the profiles of the enzymatic activity and the concentration of monomer coincide. In addition, the monomer can form the sodium-dependent, phosphorylated intermediate of the mechanism for the enzyme. Finally, a preparation of (Na+ + K+)-ATPase, dissolved in solutions of the same nonionic detergent, can be prepared in which the predominant species (greater than 85%) is the monomer. The enzyme in this solution exhibits high specific activity, and its apparent Michaelis constants for the cationic substrates are very similar to those of the purified, membrane-bound enzyme. It is concluded from these results that a monomer of the alpha beta asymmetric unit is fully capable of catalyzing (Na+ + K+)-ATPase activity, and hence active transport, in the native enzyme. A reassessment of proposed molecular mechanisms for active transport is made in light of these discoveries.  相似文献   

3.
Rabbits have been immunized with purified shark rectal gland NaK ATPase and its glycoprotein component. Serum, globulin from this serum, and a purified antibody fraction from rabbits immunized either with holoenzyme or with glycoprotein inhibited NaK ATPase activity. These antibodies also inhibited a purified NaK ATPase from the electric organ of the electric eel, but to a lesser extent, suggesting some cross reactivity. Ouchterlony double diffusion showed precipitation bands between shark NaK ATPase and serum or globulin containing antibodies against the holoenzyme or the glycoprotein. The inhibition of the NaK ATPase by antibody directed against the purified glycoprotein provides some direct evidence that the glycoprotein is a subunit of the NaK ATPase.  相似文献   

4.
Recently, developments in time-resolved spin-label electron spin resonance (ESR) spectroscopy have contributed considerably to the study of biomembranes. Two different applications of electron spin echo spectroscopy of spin-labelled phospholipids are reviewed here: (1) the use of partially relaxed echo-detected ESR spectra to study the librational lipid-chain motions in the low-temperature phases of phospholipid bilayers; (2) the use of electron spin echo envelope modulation spectroscopy to determine the penetration of water into phospholipid membranes. Results are described for phosphatidylcholine bilayer membranes, with and without equimolar cholesterol, that are obtained with phosphatidylcholine spin probes site-specifically labelled throughout the sn-2 chain.  相似文献   

5.
Vesicles containing a purified shark rectal gland (sodium + potassium)-activated adenosine triphosphatase-(NaK ATPase) were prepared by dialyzing for 2 days egg lecithin, cholate, and the NaK ATPase purified from the rectal gland of Squalus acanthias. These vesicles were capable of both Na+ and K+ transport. Studies of K+ transport were made by measuring the ATP-stimulated transport outward of 42K+ or 86Rb+. Vesicles were preloaded with isotope by equilibration at 4 degrees for 1 to 3 days. Transport of 42K+ or 86Rb+ was initiated by addition of MgATP to the vesicles. The ATP-dependent exit of either isotope was the same. Experiments are presented which show that this loss of isotope was not due to changes in ion binding but rather due to a loss in the amount of ion trapped in the vesicular volume. The transport of K+ was dependent on external Mg2+. CTP was almost as effective as ATP in stimulating K+ transport, while UTP was relatively ineffective. These effects of nucleotides parallel their effects on Na+ accumulation and their effectiveness as substrates for the enzyme. Potassium transport was inhibited by ouabain and required the presence of Na+. The following asymmetries were seen: (a) addition of external Mg2+ supported K+ transport; (b) ouabain inhibited K+ transport only if it was present inside the vesicles; (c) addition of external Na+ to the vesicles stimulated K+ transport. External Li+ was ineffective as a Na+ substitute. The specific requirement of external Na+ for K+ transport indicates that K+ exit is coupled to Na+ entry. Changes in the internal vesicular ion concentrations were studied with vesicles prepared in 20 mM NaCl and 50 mM KCl. After 1 hour of transport at 25 degrees, a typical Na+ concentration in the vesicles in the presence of ATP was 72 mM. A typical K+ concentration in the vesicles was 10 mM as measured with 42K+ or 6 mM as measured with 86Rb+. The following relationships have been calculated for Na+ transport, K+ transport and ATP hydrolysis: Na+/ATP = 1.42, K+/ATP =1.04, and Na+/K+ = 1.43. The ratio of 2.8 Na+ transported in to 2 K+ transported out is very close to the value reported for the red cell membrane. Potassium-potassium exchange similar to that observed in the red cell membrane and attributed to the Na+-K+ pump (stimulated by ATP and orthophosphate and inhibited by ouabain) was observed when vesicles were prepared in the absence of Na+. The results reported in this paper prove that the shark rectal gland NaK ATPase, which is 90 to 95% pure, is the isolated pump for the coupled transports of Na+ and K+.  相似文献   

6.
The effects of actin on the electron spin resonance of spin-labeled myosin   总被引:4,自引:0,他引:4  
Myosin and heavy meromyosin have been spin labeled at either the S1 or S2 thiol groups, and their interaction with F-actin has been studied by electron spin resonance, both in the absence of substrate and during the hydrolysis of ATP. The spectrum of myosin labeled at either group indicates strong immobilization of the label. In the absence of substrate, actin added to S1-labeled myosin slightly increases the separation of the outer spectral peaks, indicating a decrease in the mobility of the spin label. Actin also reduces the microwave power required to saturate the esr signal of S1-labeled myosin or heavy meromyosin. The latter phenomenon is a more sensitive measure of the actin-myosin interaction than the spectral change seen in the absence of saturation. This suggests that saturation measurements may provide a more sensitive method of detecting changes in the environment of slowly tumbling nitroxide radicals than spectral measurements carried out in the absence of saturation. The decrease in the amplitude of the spectrum on adding actin at saturating microwave power was used to determine the stoichiometry of the interaction between actin and heavy meromyosin. This decrease is maximal when 2 moles of actin monomer are added per mole of heavy meromyosin and is reversed when actin and myosin are dissociated by ATP. During the steady state hydrolysis of ATP, actin had no detectable effect on the spectrum of S1-labeled myosin. It can be concluded that spin labels bound to the S1 groups are in a region of the myosin molecule that is affected by the interaction with actin. Actin does not affect the rate at which the bound spin label is reduced by dithiothreitol nor does the spin labeling of S1 groups affect the activation by actin of the ATPase activity of myosin. These findings suggest that the most likely mechanism by which actin alters the mobility of labels on S1 groups involves a change in the conformation of myosin. If a spin label is bound to the S2 thiol groups rather than the S1 groups, then actin has no detectable effect on the spectrum either in the presence or absence of ATP.  相似文献   

7.
High-field electron spin resonance (ESR) spectroscopy is currently undergoing rapid development. This considerably increases the versatility of spin labelling which, at conventional field strengths, is already well established as a powerful physical technique in membrane biology. Among the unique advantages offered by high-field spectroscopy, particularly for spin-labelled lipids, are sensitivity to non-axial rotation and lateral ordering, a better orientational selection, an extended application to rotational dynamics, and an enhanced sensitivity to environmental polarity. These areas are treated in some depth, along with a detailed consideration of recent developments in the investigation of transmembrane polarity profiles.  相似文献   

8.
K Y Xu 《Biochemistry》1989,28(14):5764-5772
Determinations of reaction stoichiometry demonstrate that the covalent incorporation of one molecule of 5'-isothiocyanatofluorescein can inactivate one molecule of sodium and potassium ion activated adenosinetriphosphatase in agreement with earlier determination of this stoichiometry. Several different modified peptides are produced, however, when the modified enzyme is digested with trypsin. One of these peptides has been identified as HLLVMK (thioureidylfluorescein)GAPER by use of a specific immunoadsorbent. The modified lysine is lysine 501 in the amino acid sequence of the alpha polypeptide of (Na+ + K+)-ATPase. This peptide has been previously isolated from such digests [Farley, R. A., Tran, C. M., Carilli, C. T., Hawke, D., & Shively, J. E. (1984) J. Biol. Chem. 259, 9532-9535]. The other specifically modified peptides have been purified and identified by amino acid sequencing. Their sequences identify lysine 480 and lysine 766 from the alpha polypeptide as amino acids modified by 5'-isothiocyanatofluorescein in reactions sensitive to the addition of ATP and responsible for inactivation of the enzyme.  相似文献   

9.
A simple purification procedure for the Na,K-ATPase from membranes of the rectal gland of Squalus acanthias or crude microsomal fractions from the electric organ of Electrophorus electricus is presented here. The purification procedure consists of solubilization of the Na,K-ATPase with the nonionic detergent. Lubrol WX, chromatography of the diluted Lubrol extract on aminoethyl cellulose, and ammonium sulfate fractionation (1) of the concentrated eluate from the aminoethyl cellulose column. The yields of final purified enzyme are comparable to the earlier purification (1–4) involving the expensive and cumbersome zonal centrifugation stop. The purity of the final enzyme, as attested to by specific activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is as great or greater than that previously reported for the enzyme purified by the procedure involving zonal centrifugation. The simplicity of the present procedure, coupled with the ready commercial availability of electric eels which are quite hardy on shipment, makes purification of the Na,K-ATPase widely available to workers in the field.  相似文献   

10.
K Y Xu 《Biochemistry》1989,28(17):6894-6899
A combination of competitive labeling with [3H]acetic anhydride [Kaplan, H., Stevenson, K. J., & Hartley, B. S. (1971) Biochem. J. 124, 289-299] and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein.  相似文献   

11.
M Esmann  D Marsh 《Biochemistry》1985,24(14):3572-3578
The pH dependence and salt dependence of the lipid-protein interactions of phosphatidic acid, phosphatidylserine, and stearic acid with Na+,K+-ATPase membranes from Squalus acanthias have been studied with spin-label electron spin resonance spectroscopy, using lipids with nitroxide labels on the 14-position C atom of the sn-2 chain. For phosphatidic acid and stearic acid, the fraction of motionally restricted spin-label increases with increasing pH, with pKa's of 6.6 and 8.0, respectively. In contrast, the pKa of stearic acid in the bulk lipid environment of the membrane is estimated from spin-label spectroscopy to be approximately equal to 6.6. The fraction of motionally restricted phosphatidylserine spin-label remains constant over the pH range 4.7-9.2. In the fully dissociated state the fractions of motionally restricted spin-labeled phosphatidic and stearic acids decrease with increasing salt concentration, reaching an approximately constant value at [NaCl] = 0.5-1.0 M. For stearic acid the net decrease is comparable to that obtained on protonation, but for phosphatidic acid the decrease is considerably smaller (by approximately 55%) than that obtained on protonating the lipid. The fraction of motionally restricted phosphatidylserine spin-label varies relatively little with salt concentration up to 1 M NaCl. Direct electrostatic effects alone cannot account for the whole of the observed specificity of interaction of the two phospholipids with Na+,K+-ATPase membranes.  相似文献   

12.
A ouabain p-aminobenzenediazonium derivative with a high specific radioactivity has been synthesized from ouabain and used as a photolabel for the (sodium plus potassium)-activated adenosinetriphosphatase from Electrophorus electricus electric organ and from dog kidney. In the dark it binds reversibly to the digitalis receptor site, with binding characteristics comparable to those of ouabain. The photoactivation of the ouabain derivative to produced covalent labeling of the receptor was obtained by energy transfer from a tryptophan residue in the (Na+,K+)ATPase to the ouabain p-aminobenzenediazonium molecule bound at the active site. The great advantage of this procedure compared to previous methods is that free molecules of the photoactivatable derivative are not photodecomposed. Analysis of the photolabeled polypeptides on sodium dodecyl sulfate gel electrophoresis showed that over 90% of the total radioactivity incorporated was found in the large molecular weight alpha-chain of the kidney enzyme (Mr 93 000). The same specific labeling of the alpha-subunit was obtained with a crude microsomal fraction from Electrophorus electricus. A mild tryptic fragmentation of the subunit into two peptide fragments of Mr 58 000 and 41 000, respectively, shows that the digitalis receptor is located in the N-terminal 41 000 fragment.  相似文献   

13.
G Chin  M Forgac 《Biochemistry》1983,22(14):3405-3410
The (Na+ and K+)-stimulated adenosinetriphosphatase [(Na+,K+)-ATPase] consists of two different polypeptides, alpha and beta, both of which are embedded in the plasma membrane. The alpha chain from dog kidney (Na+,K+)-ATPase can be hydrolyzed at specific sites by trypsin and chymotrypsin [Castro, J., & Farley, R. A. (1979) J. Biol. Chem. 254, 2221-2228]. In order to position these sites with respect to the lipid bilayer, we have treated sealed, inside out vesicles from human red cells and unsealed kidney enzyme membranes with trypsin and chymotrypsin and have used ouabain-stimulated phosphorylation to identify the (Na+,K+)-ATPase and its fragments. All of the proteolytic sites observed in the kidney membranes are accessible in the inside out vesicles. The ouabain-inhibitable uptake of 86Rb+ in human red blood cells is resistant to externally added chymotrypsin. These results indicate that the proteolytic sites of the (Na+,K+)-ATPase are exposed on the cytoplasmic side of the membrane.  相似文献   

14.
P J Andree  A Zantema 《Biochemistry》1978,17(5):778-783
The reaction of glutamate dehydrogenase with two different stable nitroxides (spin labels) is reported. The two compounds contain a carbonyl and an iodoacetamide group as their reactive parts. The carbonyl compound inactivates the enzyme by the formation of a 1:1 covalent complex after NaBH4 reduction of an intermediate Schiff's base. Evidence indicates that the enzyme is modified at lysine-126 in the active site. The electron spin resonance (ESR) spectrum of spin-labeled enzyme indicates a high degree of immobilization of the nitroxide. The binding of reduced coenzyme NADPH is reflected by a change (immobilization) of the ESR spectrum. Nuclear relaxation of bound substrate, oxidized coenzyme, and inhibitor by the paramagnetic group is observed. This shows the existence of a binding site for these compounds close to the active site. The distances of selected protons of the binding ligands to the nitroxide are calculated. The iodoacetamide spin label reacts with several groups, one of which is not a sulfhydryl. The reaction of this particular group causes inactivation of the enzyme. Protection against this inactivation could be achieved with certain ligands. Only enzyme that was spin labeled without such protection caused paramagnetic relaxation of bound substrate and coenzyme.  相似文献   

15.
We have calculated the average value of the order parameter of a spin labelled lipid hydrocarbon chain in a DMPC bilayer containing a concentration c, of glycophorin, for a temperature above the main lipid phase transition temperature. We use the results of differential scanning calorimetry together with the results of other calculations to evaluate the parameters involved. To determine the orientation of the spin label, which is located near the glyceride backbone, we use the rotation isomeric model of hydrocarbon chains and allow for rocking and rotation of the chain. Our results are in good agreement with recent measurements and enable us to say that between about 200 and 1300 lipid molecules can be under the large glycophorin polar group ‘umbrella’ depending upon its conformation. In the case where this polar group adopts a ‘pancake’ conformation with about 1300 lipid molecules under it, we find that about 750–800 of them are perturbed and experience a reduced effective lateral pressure. We have calculated the average order parameter of a diphenylhexatriene (DPH) molecule under the same conditions as above, using the parameters determined there. We have used this calculation to predict the value of r that should be observed as a function of glycophorin concentration at T = 30°C. The predicted curve displays an unusual shape not observed in other lipid-protein bilayer membranes.  相似文献   

16.
The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.  相似文献   

17.
J Kyte  K Y Xu  R Bayer 《Biochemistry》1987,26(25):8350-8360
Evidence that the peptide HLLVMKGAPER, which can be released from intact sodium and potassium ion activated adenosinetriphosphatase by tryptic digestion, is located on the cytoplasmic surface of the native enzyme has been obtained. An immunoadsorbent directed against the carboxy-terminal sequence of this tryptic peptide has been constructed. The peptide KGAPER was synthesized by solid-phase techniques. Antibodies against the sequence -GAPER were purified by immunoadsorption, using the synthetic peptide attached to agarose beads. These antibodies, in turn, were coupled to agarose beads to produce an immunoadsorbent. Sealed, right-side-out vesicles, prepared from canine kidneys, were labeled with pyridoxal phosphate and sodium [3H]borohydride in the absence or presence of saponin, respectively. A tryptic digest of these labeled vesicles was passed over the immunoadsorbent. Large increases in the incorporation of radioactivity into the peptides bound by the immunoadsorbent were observed in the digests obtained from the vesicles exposed to saponin. From the results of several control experiments examining the labeling reaction as applied to these vesicles, it could be concluded that this increase in incorporation resulted only from the access that the reagents gained to the inside of the vesicles in the presence of saponin and that the increase in the extent of modification was due to the cytoplasmic disposition of this segment in the native enzyme.  相似文献   

18.
The interaction of lipids, spin-labeled at different positions in the sn-2 chain, with cytochrome c oxidase reconstituted in gel-phase membranes of dimyristoylphosphatidylglycerol has been studied by electron paramagnetic resonance (EPR) spectroscopy. Nonlinear EPR methods, both saturation transfer EPR and progressive saturation EPR, were used. Interaction with the protein largely removes the flexibility gradient of the lipid chains in gel-phase membranes. The rotational mobility of the chain segments is reduced, relative to that for gel-phase lipids, by the intramembranous interaction with cytochrome c oxidase. This holds for all positions of chain labeling, but the relative effect is greater for chain segments closer to the terminal methyl ends. Modification of the paramagnetic metal-ion centers in the protein by binding azide has a pronounced effect on the spin-lattice relaxation of the lipid spin labels. This demonstrates that the centers modified are sufficiently close to the first-shell lipids to give appreciable dipolar interactions and that their vertical location in the membrane is closer to the 5-position than to the 14-position of the lipid chains.  相似文献   

19.
Summary Apical cell membranes from Na+-transporting epithelia were identified in centrifugal fractions prepared from homogenates of rainbow trout kidney, gill and frog skin using a spinlabeled, nitroxide derivative of amiloride and electron paramagnetic resonance spectroscopy. Spin-labeled amiloride (ASp) is a potent inhibitor of Na+ transport. Frog skin shortcircuit current was inhibited by 50% in the presence of 7×10–8 m ASp, whereas 4×10–7 m amiloride was required to obtain the same effect. ASp is a suitable probe for the amiloride binding site based on analytical criteria: Unbound ASp produces an EPR signal linear with concentration and detectable at micromolar concentrations. Estimates of ASp binding can usually be made on less than 100 g of membrane protein. While ASp binds nonspecifically to many materials, amiloride- or benzamil-displaceable binding occurred only in trout gill and kidney, and in frog skin, but not in trout skeletal muscle. ASp binds to membrane fractions produced by differential centrifugation of trout gill, kidney and frog skin. In trout gill and kidney, 81% and 91%, respectively, of the amiloride-displaceable ASp binding is found in the 10,000 xg fraction. All of the ASp binding in frog skin is found in the 10,000 xg fraction. These data indicate that spin-labeled amiloride is a useful probe for the identification of the amiloride binding site, and electron paramagnetic resonance spectroscopy will allow the amiloride binding site to be used as a molecular marker for apical membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号