首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast Hog1 protein is both functionally and structurally similar to the mammalian p38, belonging to the same family of mitogen-activated protein (MAP) kinases and responding to extracellular changes in osmolarity. Since p38 mediates lipopolysaccharide (LPS) effects in mammalian cells, we now tested the responsiveness of Hog1 upon exposure of the yeast Saccharomyces cerevisiae to bacterial LPS. In the presence of Escherichia coli LPS (100 ng/ml) and an endotoxically active, hexaacylated, synthetic lipid A (compound 506; 100 ng/ml), Hog1 becomes phosphorylated with a maximum of phosphorylation between 3 and 6 h, whereas a tetraacylated, inactive form of lipid A (compound 406) did not cause any modification in the phosphorylation state of Hog1. A triple labeling immunocytochemical study showed that phosphorylated Hog1 translocates into the nucleus after a 90-min incubation and becomes sparsely located in the cytoplasm. The translocation of the phospho-Hog1 is preceded by an increased expression of the HOG1 gene and concomitant with the expression of the Hog1 target gene, GPD1. We also observed that cells unable to synthesize Hog1 do not resist LPS as efficiently as wild-type cells. We conclude that the yeast S. cerevisiae is able to respond to the presence of Gram-negative bacteria endotoxin and that Hog1 is involved in this response.  相似文献   

2.
Lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria belongs to the most potent activators of the mammalian immune system. Its lipid moiety, lipid A, the 'endotoxic principle' of LPS, carries two negatively charged phosphate groups and six acyl chain residues in a defined asymmetric distribution (corresponding to synthetic compound 506). Tetraacyl lipid A (precursor IVa or synthetic 406), which lacks the two hydroxylated acyl chains, is agonistically completely inactive, but is a strong antagonist to bioactive LPS when administered to the cells before LPS addition. The two negative charges of lipid A, represented by the two phosphate groups, are essential for agonistic as well as for antagonistic activity and no highly active lipid A are known with negative charges other than phosphate groups. We hypothesized that the phosphate groups could be substituted by other negatively charged groups without changing the endotoxic properties of lipid A. To test this hypothesis, we synthesized carboxymethyl (CM) derivatives of hexaacyl lipid A (CM-506 and Bis-CM-506) and of tetraacyl lipid A (Bis-CM-406) and correlated their physicochemical with their endotoxic properties. We found that, similarly to compounds 506 and 406, also for their carboxymethyl derivatives a particular molecular ('endotoxic') conformation and with that, a particular aggregate structure is a prerequisite for high cytokine-inducing capacity and antagonistic activity, respectively. In other parameters such as acyl chain melting behaviour, antibody binding, activity in the Limulus lysate assay, and partially the binding of 3-deoxy-D-manno-oct-2-ulosonic acid transferase, strong deviations from the properties of the phosphorylated compounds were observed. These data allow a better understanding of endotoxic activity and its structural prerequisites.  相似文献   

3.
Abstract Endotoxin (lipopolysaccharide, LPS) induces the production of mediators of inflammation, which exerts pathophysiological effects such as fever or shock in mammals. In the present study we have investigated the modulation of LPS by the synthetic non-active tetraacylated precursor Ia of lipid A (compound 406) in the induction of tumor necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 6 (IL-6) in human peripheral blood mononuclear cells (PBMC) and in human peripheral blood monocytes (PBMo). PBMC stimulated with LPS released TNF in a concentration dependent manner. Release of biologically active TNF, IL-1 and IL-6 was first detectable 4 h after LPS stimulation. Compound 406 alone in all concentrations tested did not induce TNF, IL-1 or IL-6 release, intracellular TNF or IL-1β, or mRNA for TNF or IL-1. Added to PBMC 1 h before LPS compound 406 enhanced or suppressed TNF release and suppressed IL-1 and IL-6 release depending on the ratio of concentrations between stimulator (LPS) and modulator (compound 406). In contrast to LPS stimulation alone TNF, IL-1 and IL-6 release in presence of compound 406 was delayed and first detectable after 6 to 8 h. Compound 406 was able to suppress LPS-induced intracellular TNF and IL-1β in PBMC. Added to PBMo 1 h before LPS it totally inhibited the production of mRNA for TNF and IL-1. When added to PBMC 1 h after LPS, TNF release was suppressed in a concentration-dependent way and release of biologically active TNF, IL-1 and IL-6 could again be detected for the first time after 4 h. Compound 406 was not able to inhibit phorbol 12-myristate 13-acetate (PMA)-induced TNF and IL-1 release in PBMo which suggests that its modulating effect is LPS-specific. This study provides evidence that the modulating effect of compound 406 on the LPS induction of TNF, IL-, 1 and IL-6 could be due to competitive binding.  相似文献   

4.
A synthetic lipid A of Porphyromonas gingivalis strain 381 (compound PG-381), which is similar to its natural lipid A, demonstrated no or very low endotoxic activities as compared to Escherichia coli-type synthetic lipid A (compound 506). On the other hand, compound PG-381 had stronger hemagglutinating activities on rabbit erythrocytes than compound 506. Compound PG-381 also induced mitogenic responses in spleen cells from lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice, as well as LPS-responsive C3H/HeN mice. The addition of polymyxin B resulted in the inhibition of mitogenic activities, however, compound 506 did not show these capacities. Additionally, compound PG-381 showed a lower level of activity in inducing cytokine production in peritoneal macrophages and gingival fibroblasts from C3H/HeN mice, but not C3H/HeJ mice, in comparison to compound 506. Thus, this study demonstrates that the chemical synthesis of lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, confirms its low endotoxic potency and immunobiological activity.  相似文献   

5.
The lipid A of LPS activates TLR4 through an interaction with myeloid differentiation protein-2 (MD-2) and the degree of lipid A acylation affects TLR4 responsiveness. Two TLR4 single nucleotide polymorphisms (Asp299Gly and Thr399Ile) have been associated with LPS hyporesponsiveness. We hypothesized that the combination of hypoacylation and these single nucleotide polymorphisms would exhibit a compounded effect on TLR4 signaling. HEK293T transfectants expressing wild-type or polymorphic TLR4 were stimulated with Escherichia coli (predominantly hexaacylated lipid A) or Shigella flexneri 2a (a mixture of hexaacylated, pentaacylated, and predominantly tetraacylated lipid A) LPS, or hexaacylated vs pentaacylated synthetic lipid As. NF-kappaB-reporter activity was significantly lower in response to S. flexneri 2a than E. coli LPS and further decreased in polymorphic transfectants. Neither hexaacylated nor pentaacylated synthetic lipid A induced NF-kappaB activity in wild-type transfectants under the identical transfection conditions used for LPS; however, increasing human MD-2 expression rescued responsiveness to hexaacylated lipid A only, while murine MD-2 was required to elicit a response to pentaacylated lipid A. Adherent PBMC of healthy volunteers were also compared for LPS-induced TNF-alpha, IL-6, IL-1beta, and IL-10 production. Cytokine levels were significantly lower (approximately 20-90%) in response to S. flexneri than to E. coli LPS/lipid A and PBMC from polymorphic individuals secreted decreased cytokine levels in response to both LPS types and failed to respond to pentaacylated lipid A. Thus, the combination of acylation state and host genetics may significantly impact vaccine immunogenicity and/or efficacy, whether LPS is an integral component of a whole organism vaccine or included as an adjuvant.  相似文献   

6.
The Toll-like receptor 4/MD-2 receptor complex recognizes endotoxin, a Gram-negative bacterial cell envelope component. Recognition of the most potent hexaacylated form of endotoxin is mediated by the sixth acyl chain that protrudes from the MD-2 hydrophobic pocket and bridges TLR4/MD-2 to the neighboring TLR4 ectodomain, driving receptor dimerization via hydrophobic interactions. In hypoacylated endotoxins all acyl chains could be accommodated within the binding pocket of the human hMD-2. Nevertheless, tetra- and pentaacylated endotoxins activate the TLR4/MD-2 receptor of several species. We observed that amino acid residues 82 and 122, located at the entrance to the endotoxin binding site of MD-2, have major influence on the species-specific endotoxin recognition. We show that substitution of hMD-2 residue V82 with an amino acid residue with a bulkier hydrophobic side chain enables activation of TLR4/MD-2 by pentaacylated and tetraacylated endotoxins. Interaction of the lipid A phosphate group with the amino acid residue 122 of MD-2 facilitates the appropriate positioning of the hypoacylated endotoxin. Moreover, mouse TLR4 contributes to the agonistic effect of pentaacylated msbB endotoxin. We propose a molecular model that explains how the molecular differences between the murine or equine MD-2, which both have sufficiently large hydrophobic pockets to accommodate all five or four acyl chains, influence the positioning of endotoxin so that one of the acyl chains remains outside the pocket and enables hydrophobic interactions with TLR4, leading to receptor activation.  相似文献   

7.
An understanding of details of the interaction mechanisms of bacterial endotoxins (lipopolysaccharide, LPS) with the oxygen transport protein hemoglobin is still lacking, despite its high biological relevance. Here, a biophysical investigation into the endotoxin:hemoglobin interaction is presented which comprises the use of various rough mutant LPS as well as free lipid A; in addition to the complete hemoglobin molecule from fetal sheep extract, also the partial structure alpha-chain and the heme-free sample are studied. The investigations comprise the determination of the gel-to-liquid crystalline phase behaviour of the acyl chains of LPS, the ultrastructure (type of aggregate structure and morphology) of the endotoxins, and the incorporation of the hemoglobins into artificial immune cell membranes and into LPS. Our data suggest a model for the interaction between Hb and LPS in which hemoglobins do not react strongly with the hydrophilic or with the hydrophobic moiety of LPS, but with the complete endotoxin aggregate. Hb is able to incorporate into LPS with the longitudinal direction parallel to the lipid A double-layer. Although this does not lead to a strong disturbance of the LPS acyl chain packing, the change of the curvature leads to a slightly conical molecular shape with a change of the three-dimensional arrangement from unilamellar into cubic LPS aggregates. Our previous results show that cubic LPS structures exhibit strong endotoxic activity. The property of Hb on the physical state of LPS described here may explain the observation of an increase in LPS-mediating endotoxicity due to the action of Hb.  相似文献   

8.
The inhibition of LPS-induced cell activation by specific antagonists is a long-known phenomenon; however, the underlying mechanisms are still poorly understood. It is commonly accepted that the membrane-bound receptors mCD14 and TLR4 are involved in the activation of mononuclear cells by LPS and that activation may be enhanced by soluble LPS-binding protein (LBP). Hexaacylated Escherichia coli lipid A has the highest cytokine-inducing capacity, whereas lipid A with four fatty acids (precursor IVa, synthetic compound 406) is endotoxically inactive, but expresses antagonistic activity against active LPS. Seeking to unravel basic molecular principles underlying antagonism, we investigated phospholipids with structural similarity to compound 406 with respect to their antagonistic activity. The tetraacylated diphosphatidylglycerol (cardiolipin, CL) exhibits high structural similarity to 406, and our experiments showed that CL strongly inhibited LPS-induced TNF-alpha release when added to the cells before stimulation or as a CL/LPS mixture. Also negatively charged and to a lesser degree zwitterionic diacyl phospholipids inhibited LPS-induced cytokine production. Using Abs against LBP, we could show that the activation of cells by LPS was dependent on the presence of cell-associated LBP, thus making LBP a possible target for the antagonistic action of phospholipids. In experiments investigating the LBP-mediated intercalation of LPS and phospholipids into phospholipid liposomes mimicking the macrophage membrane, we could show that preincubation of soluble LBP with phospholipids leads to a significant reduction of LPS intercalation. In summary, we show that LBP is a target for the inhibitory function of phospholipids.  相似文献   

9.
Abstract Experiments were designed to investigate the significance of lipid A partial structures, precursor Ia (compound 406), and lipid X (compound 401) to serve as antagonists of interleukin 1 (IL-1) release from human mononuclear cells and monocytes induced by lipopolysaccharide (LPS, endotoxin) of Salmonella aborus equi or synthetic Escherichia coli lipid A (compound 506). A definite inhibition mediated by lipid A partial structures on IL-1 release induced by LPS or lipid A was found in repeated experiments. The inhibitory effect was exterted not only on IL-1 release, but also on IL-1 peptide synthesis at the intracellular level. The results also show that lipid A partial structures have suppressive effects even when added 1–4 after LPS or lipid A. We conclude from these results that lipis A partial structures (precursor Ia and lipid X) have potent immunomodulatory effects on LPS- and lipid A-induced IL-1 release and may become useful reagents to study the mechanism of interaction of LPS and lipid A with cells of the immune system.  相似文献   

10.
Experiments were designed to investigate the significance of lipid A partial structures, precursor Ia (compound 406), and lipid X (compound 401) to serve as antagonists of interleukin 1 (IL-1) release from human mononuclear cells and monocytes induced by lipopolysaccharide (LPS, endotoxin) of Salmonella abortus equi or synthetic Escherichia coli lipid A (compound 506). A definite inhibition mediated by lipid A partial structures on IL-1 release induced by LPS or lipid A was found in repeated experiments. The inhibitory effect was exerted not only on IL-1 release, but also on IL-1 peptide synthesis at the intracellular level. The results also show that lipid A partial structures have suppressive effects even when added 1-4 h after LPS or lipid A. We conclude from these results that lipid A partial structures (precursor Ia and lipid X) have potent immunomodulatory effects on LPS- and lipid A-induced IL-1 release and may become useful reagents to study the mechanism of interaction of LPS and lipid A with cells of the immune system.  相似文献   

11.
Bacterial lipopolysaccharide (LPS) induces the production of various inflammatory cytokines and the inducibility is considered attributable to the glycolipid part of LPS called lipid A. We report an in vitro model in which lipid A is not necessarily a minimal structure for the LPS activity. Vitamin D3-differentiated THP-1 cells, cultured human monocytic leukemia cells, produced a high level of interleukin-6 (IL-6) by stimulating LPS from Escherichia coli O111:B4, but not by stimulating synthetic E. coli-type lipid A (compound 506), E. coli Re mutant LPS (ReLPS), or alkali-treated LPS. The induction by LPS was inhibited by the anti-CD14 antibodies or by the synthetic lipid A precursor (compound 406). An alkali-treated LPS or compound 506 partially inhibited the LPS-induced IL-6 production. These facts suggest that lipid A alone is not sufficient for the IL-6-inducing activity, but the polysaccharide part in LPS contributes or acts as a co-factor for activation of differentiated THP-1 cells.  相似文献   

12.
Gram-negative bacterial endotoxin (i.e. lipopolysaccharide (LPS)) is one of the most potent stimulants of the innate immune system, recognized by the TLR4·MD-2 complex. Direct binding to MD-2 of LPS and LPS analogues that act as TLR4 agonists or antagonists is well established, but the role of MD-2 and TLR4 in receptor activation is much less clear. We have identified residues within the hairpin of MD-2 between strands five and six that, although not contacting acyl chains of tetraacylated lipid IVa (a TLR4 antagonist), influence activation of TLR4 by hexaacylated lipid A. We show that hydrophobic residues at positions 82, 85, and 87 of MD-2 are essential both for transfer of endotoxin from CD14 to monomeric MD-2 and for TLR4 activation. We also identified a pair of conserved hydrophobic residues (Phe-440 and Phe-463) in leucine-rich repeats 16 and 17 of the TLR4 ectodomain, which are essential for activation of TLR4 by LPS. F440A or F463A mutants of TLR4 were inactive, whereas the F440W mutant retained full activity. Charge reversal of neighboring cationic groups in the TLR4 ectodomain (Lys-388 and Lys-435), in contrast, did not affect cell activation. Our mutagenesis studies are consistent with a molecular model in which Val-82, Met-85, and Leu-87 in MD-2 and distal portions of a secondary acyl chain of hexaacylated lipid A that do not fit into the hydrophobic binding pocket of MD-2 form a hydrophobic surface that interacts with Phe-440 and Phe-463 on a neighboring TLR4·MD-2·LPS complex, driving TLR4 activation.Bacterial lipopolysaccharide (LPS)3 is recognized by the innate immune system of vertebrates via an elaborate mechanism involving the membrane receptor TLR4 (1, 2). The extracellular (or cell surface) proteins LPS-binding protein and CD14 promote extraction and transfer of individual molecules of LPS from the Gram-negative bacterial outer membrane to MD-2, either secreted monomeric soluble (s)MD-2 or MD-2 bound with high affinity to the ectodomain of TLR4 (37). In contrast to other Toll-like receptors, TLR4 requires an additional molecule, MD-2, for ligand recognition (8). In contrast to MD-2, there has been no evidence of direct binding of LPS to TLR4 (9, 10). Although LPS, and particularly the lipid A portion of LPS, is generally conserved among Gram-negative bacteria, there are many variables in LPS structure that affect TLR4 activation. Most important is the acylation pattern of the lipid A moiety, which represents the minimal segment of LPS that can trigger activation of TLR4 (11). Comparison of crystal structures of MD-2 with and without bound tetraacylated lipid IVa indicates no significant alteration of the protein fold in the absence or presence of bound ligand (12). It has been proposed that both LPS and MD-2 are key to the different effects of tetra- versus hexaacylated LPS on TLR4 (8, 13, 14). Lipid IVa complexed to murine MD-2 has weak agonist effects on murine TLR4 but acts as a receptor antagonist in the same complex containing human MD-2. Hexaacylated endotoxins complexed to human or murine MD-2 act as potent TLR4 agonists. The crystal structure of the TLR4·MD-2·eritoran complex revealed that MD-2 binds to the N-terminal region of TLR4 (15). It seems likely that for TLR4 activation, there needs to be an additional interaction between two ternary TLR4·MD-2·LPS complexes, which is agonist-dependent (1517). Because tetraacylated and hexaacylated endotoxins that act, respectively, as TLR4 antagonists and agonists differ only in their acylation pattern, we speculated that hydrophobic protein-lipid A interactions are essential in the agonist properties of hexaacylated lipid A. To pursue this hypothesis, we used molecular modeling to select and test the involvement of solvent-exposed hydrophobic residues of MD-2 and TLR4, which we reasoned could be needed for TLR4 activation. We show by mutagenesis studies that residues on the solvent-exposed hairpin of MD-2 support transfer of endotoxin from CD14 to MD-2 and TLR4 activation only when these sites contain hydrophobic residues. In the ectodomain of TLR4, we have identified two neighboring phenylalanine residues located on the convex face of consecutive leucine rich repeats that are required for LPS-triggered TLR4 activation. From those results and molecular docking, we propose that amino acid side chains of both MD-2 and TLR4 ectodomain form an acyl chain binding site, which envelops part of an acyl chain of lipid A that cannot fit into the binding pocket of MD-2 in a TLR4·MD-2 complex and represents a key to LPS-induced TLR4 activation.  相似文献   

13.
The stimulation of both THP-1 and U937 human-derived cells by Salmonella lipid A preparations from various strains, as assessed by TNF-alpha induction and NF-kappaB activation, was found to be very low (almost inactive) compared with Escherichia coli lipid A, but all of the lipid As exerted strong activity on mouse cells and on Limulus gelation activity. Experiments using chemically synthesized E. coli-type hexaacylated lipid A (506) and Salmonella-type heptaacylated lipid A (516) yielded clearer results. Both lipid A preparations strongly induced TNF-alpha release and activated NF-kappaB in mouse peritoneal macrophages and mouse macrophage-like cell line J774-1 and induced Limulus gelation activity, although the activity of the latter was slightly weaker than that of the former. However, 516 was completely inactive on both THP-1 and U937 cells in terms of both induction of TNF-alpha and NF-kappaB activation, whereas 506 displayed strong activity on both cells, the same as natural E. coli LPS. In contrast to the action of the lipid A preparations, all the Salmonella LPSs also exhibited full activity on human cells. However, the polysaccharide portion of the LPS neither exhibited TNF-alpha induction activity on the cells when administered alone or together with lipid A nor inhibited the activity of the LPS. These results suggest that the mechanism of activation by LPS or the recognition of lipid A structure by human and mouse cells may differ. In addition, both 516 and lipid A from Salmonella were found to antagonize the 506 and E. coli LPS action that induced TNF-alpha release and NF-kappaB activation in THP-1 cells.  相似文献   

14.
The protein-bound polysaccharide isolated from basidiomycetes (PSK) is a biological response modifier capable of exhibiting various biological activities, such as antitumor and antimicrobial effects. In the present study, we found that PSK suppressed interleukin (IL)-6 production in murine peritoneal macrophages stimulated with endotoxic lipopolysaccharide (LPS) and its synthetic lipid A (compound 506). Nitric oxide production and p38 mitogen-associated protein kinase phosphorylation induced in a murine macrophage cell line, J774-A1, by LPS and compound 506 were also inhibited by PSK. Further, PSK distinctly suppressed nuclear factor-kappaB activation in Ba/F3 cells expressing mouse Toll-like receptor 4 and MD-2, following stimulation with LPS and compound 506, however, not with Taxol. These PSK-induced inhibitory activities were caused by inhibition of the physical associations of LPS with LPS-binding protein (LBP) and CD14. PSK also protected mice from LPS-induced lethality, presumably by down-regulating IL-6 and tumor necrosis factor-alpha concentrations in serum. These findings indicate that PSK, which also has an ability to regulate LBP/CD14 functions, may be useful for clinical control of endotoxic sepsis.  相似文献   

15.
Abstract Natural partial structures of lipopolysaccharide (LPS) as well as synthetic analogues and derivatives of lipid A were compared with respect to inhibit the binding of 125I-labelled Re-chemotype LPS to mouse macrophage-like J774.1 cells to induce cytokine-release in J774.1 cells. LPS, synthetic Escherichia coli -type lipid A (compound 506) and tetraacyl percursor Ia (compound 406) inhibited the binding of 125I-LPS to macrophage-like J774.1 cells and induced the release of tumor ncerosis factor α (TNFα) and interleukin 6 (IL-6). Deacylated R-chemotype LPS preparations were completely inactive in inhibiting binding and in inducing cytokine-release. Among tetraacyl compounds, the inhibition-capacity of LPS-binding was in decreasing order: PE-4 ( α -phosphonooxyethyl analogue of 406)>406⪢>404(4′-monophosphoryl partial structure of 406)>405 (1-monophosphoryl partial structure of 406). In the case of hexaccyl preparations, compounds 506, PE-1 (α-phosphonooxyethyl analogue of 506) and PE-2 (differing from PE-1 in having 14:0 at positions 2 and 3 of the reducing GlcN) inhibited LPS-binding and induced cytokine release equally well, whereas preparation PE-3 (differing from PE-2 in containing a β-phosphhonooxyethyl group) showed a substantially lower capacity in binding-inhibition and cytokine-induction. The conclusion is that chemical changes in the hydrophilic lipid A backbone reduce the capacity of lipid A to bind to cells, whereas the number of fatty acids determines the capacity of lipid A to activate cells. These results indicate that the bisphosphorylated hexosamine backbone of lipid A is essential for specific binding of LPS to macrophages and that the acylation pattern plays a critical role for LPS-promoted cell activation, i.e. cytokine induction.  相似文献   

16.
The interaction of selected endotoxin preparations (lipid A from Erwinia carotovora and LPS Re and Ra from Salmonella enterica sv. Minnesota strains R595 and R60, respectively) with selected bile acids was investigated biophysically. Endotoxin aggregates were analyzed for their gel-to-liquid crystalline phase behavior, the type of their aggregates, the conformation of particular functional groups, and their Zeta potential in the absence and presence of the bile acids by applying Fourier-transform infrared spectroscopy, differential scanning calorimetry, measurements of the electrophoretic mobility, and synchrotron radiation X-ray scattering. In addition, the ability of the endotoxins to induce cytokines in human mononuclear cells was tested in the absence and presence of varying concentrations of bile acids. The data show that the endotoxin:bile acid interaction is not governed by Coulomb forces, rather a hydrophobic interaction takes place. This leads to an enhanced formation of the inherent cubic aggregate structures of the endotoxins, concomitant with a slight disaggregation, as evidenced by freeze-fracture electron microscopy. Parallel to this, the addition of bile acids increased the bioactivity of lipid A and, to a lower degree, also that of the tested rough mutant LPS at lower concentrations of the endotoxin preparation, a finding similar as reported for the interaction of other agents such as hemoglobin. These data imply that there are general mechanisms that govern the expression of biological activities of endotoxins.  相似文献   

17.
Biological activities of two groups of synthesized lipid A analogs, the counterpart of biosynthetic precursor, Lehmann's Ia type, 406, and E. coli lipid A type, 506, as well as their non-phosphorylated, and mono-phosphorylated analogs were investigated. The activities employed included four bone marrow cell reactions in mice, mice skin reaction, leukocytes migration in rabbits' cornea, and hemagglutination. Compound 406 and 506 elicited bone marrow reactions in mice and hemagglutination of mouse RBC, although 406 failed to elicit hemorrhage and necrosis also in mice skin. Compound 406 did not elicit corneal reaction in rabbits. The results suggest that for elicitation of this reaction and mice skin reaction, acyloxyacyl structure is required. Cytotoxicity and thromboplastin production of four bone marrow reactions had been reported by us to be endotoxic reactions, since these had not been elicited by peptidoglycan of Lactobacillus and Staphylococcus (1981) and 300 series synthesized analogs (1984) which did not have endotoxic structures. From these results, it seems that these two marrow reactions and hemagglutination require, as does the limulus test, the lipid A part structure as is present in 406.  相似文献   

18.
The interaction of hemoglobin (Hb) with endotoxins [i.e. with enterobacterial deep rough mutant lipopolysaccharide (LPS) Re and the "endotoxic principle" of LPS, lipid A] was investigated using a variety of physical techniques and with two biological assays, tumor necrosis factor (TNF)-alpha induction in human mononuclear cells and the Limulus amebocyte lysate (LAL) assay. Fourier-transform IR-spectroscopic experiments indicate nonelectrostatic binding to the hydrophobic moiety with a slight rigidification of the lipid A acyl chains, and an increase in the inclination of the lipid A backbone with respect to the membrane surface from 35 degrees to more than 40 degrees due to Hb binding, but no change of the predominantly alpha-helical secondary structures of Hb due to LPS binding. From isothermal titration calorimetry, the molar [Hb] : [endotoxin] binding ratio lies between 1 : 3 and 1 : 5 molar. Synchrotron radiation X-ray diffraction measurements indicate a reorientation of the lipid A aggregates from one cubic structure to another, the final structure belonging to space group Q224. The LPS-induced TNF-alpha production of mononuclear cells is enhanced by Hb, whereas in the LAL assay an LPS concentration-dependent increase or decrease was observed. Although a detailed mechanism of action cannot be given, the enhancement of LPS bioactivity can be understood in the light of the previously presented conformational concept; Hb induces an increase in the conical shape of the lipid A moiety of LPS, higher cross-section of the hydrophobic than the hydrophilic part, and of the inclination angle of the diglucosamine backbone with respect to the direction of the acyl chains.  相似文献   

19.
The chemical structure of free lipid A isolated from rough- and smooth-form lipopolysaccharides (R-LPS and S-LPS, respectively) of the human gastroduodenal pathogen Helicobacter pylori was elucidated by compositional and degradative analysis, nuclear magnetic resonance spectroscopy, and mass spectrometry. The predominant molecular species in both lipid A components are identical and tetraacylated, but a second molecular species which is hexaacylated is also present in lipid A from S-LPS. Despite differences in substitution by acyl chains, the hydrophilic backbone of the molecules consisted of beta(1,6)-linked D-glucosamine (GlcN) disaccharide 1-phosphate. Because of microheterogeneity, nonstoichiometric amounts of ethanolamine-phosphate were also linked to the glycosidic hydroxyl group. In S-LPS, but not in R-LPS, the hydroxyl group at position 4' was partially substituted by another phosphate group. Considerable variation in the distribution of fatty acids on the lipid A backbone was revealed by laser desorption mass spectrometry. In tetraacyl lipid A, the amino group of the reducing GlcN carried (R)-3-hydroxyoctadecanoic acid (position 2), that of the nonreducing GlcN carried (R)-3-(octadecanoyloxy)octadecanoic acid (position 2'), and ester-bound (R)-3-hydroxyhexadecanoic acid was attached at position 3. Hexaacyl lipid A had a similar substitution by fatty acids, but in addition, ester-bound (R)-3-(dodecanoyloxy)hexadecanoic acid or (R)-3(tetradecanoyloxy)hexadecanoic acid was attached at position 3'. The predominant absence of ester-bound 4'-phosphate and the presence of tetraacyl lipid A with fatty acids of 16 to 18 carbons in length differentiate H. pylori lipid A from that of other bacterial species and help explain the low endotoxic and biological activities of H. pylori LPS.  相似文献   

20.
Lipid A (a hexaacylated 1,4' bisphosphate) is a potent immune stimulant for TLR4/MD-2. Upon lipid A ligation, the TLR4/MD-2 complex dimerizes and initiates signal transduction. Historically, studies also suggested the existence of TLR4/MD-2-independent LPS signaling. In this article, we define the role of TLR4 and MD-2 in LPS signaling by using genome-wide expression profiling in TLR4- and MD-2-deficient macrophages after stimulation with peptidoglycan-free LPS and synthetic Escherichia coli lipid A. Of the 1396 genes significantly induced or repressed by any one of the treatments in the wild-type macrophages, none was present in the TLR4- or MD-2-deficient macrophages, confirming that the TLR4/MD-2 complex is the only receptor for endotoxin and that both are required for responses to LPS. Using a molecular genetics approach, we investigated the mechanism of TLR4/MD-2 activation by combining the known crystal structure of TLR4/MD-2 with computer modeling. According to our murine TLR4/MD-2-activation model, the two phosphates on lipid A were predicted to interact extensively with the two positively charged patches on mouse TLR4. When either positive patch was abolished by mutagenesis into Ala, the responses to LPS and lipid A were nearly abrogated. However, the MyD88-dependent and -independent pathways were impaired to the same extent, indicating that the adjuvant activity of monophosphorylated lipid A most likely arises from its decreased potential to induce an active receptor complex and not more downstream signaling events. Hence, we concluded that ionic interactions between lipid A and TLR4 are essential for optimal LPS receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号