首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endonuclease colicin E2 (ColE2), a bacteriocidal protein, and the associated cognate immunity protein (Im2) are released from producing Escherichia coli cells. ColE2 interaction with the target cell outer membrane BtuB protein and Tol import machinery allows the dissociation of Im2 from its colicin at the outer membrane surface. Here, we use in vivo approaches to show that a small amount of ColE2-Im2 protein complex bound to sensitive cells is susceptible to proteolytic cleavage by the outer membrane protease, OmpT. The presence of BtuB is required for ColE-Im2 cleavage by OmpT. The amount of colicin cleaved by OmpT is greatly enhanced when ColE2 is dissociated from Im2. We further demonstrate that OmpT cleaves the C-terminal DNase domain of the toxin. As expected, strains that over-produce OmpT are less susceptible to infection by ColE2 than by ColE2-Im2. Our findings reveal an additional function for the immunity protein beside protection of producing cells against their own colicin in the cytoplasm. Im2 protects ColE2 against OmpT-mediated proteolytic attack.  相似文献   

2.
L V Krashennikova 《Genetika》1987,23(9):1708-1710
Insertions of transposons into ColE1 plasmid have been shown to influence the plasmid-specified colicin synthesis. The quantity of colicin produced by a single bacterium being unchanged, a portion of colicin-producing cells in the population of those containing insertion mutants was 10(1)-10(4)-fold lower than in the case of ColE1. The effect of transposon was only observed in cis. Insertions were located in different sites of plasmid in both orientations. No secondary DNA rearrangements were formed in regions adjacent to the points of insertions. On the basis of data obtained. It is concluded that the phenomenon can be connected with neither of known types of mutations induced by transposons. A possibility of existence of a new type of such mutations is discussed.  相似文献   

3.
Induction and repair of double- and single-strand DNA breaks have been measured after decays of 125I and 3H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-(125I)iodo-2'-deoxyuridine or with (methyl-3H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10(-14) (double-strand breaks) and 2.82 x 10(-12) (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all.  相似文献   

4.
The ColE7 operon is an SOS response regulon, which encodes bacteriocin ColE7 to kill susceptible Escherichia coli and its related enterobacteria under conditions of stress. We have observed for the first time that polyamines confer limited resistance against ColE7 on E. coli cells. Thus, this study aims to investigate the role of polyamines in modulating the protective effect of the E. coli cells against colicin. In the experiments, we surprisingly found that endogenous polyamines are also essential for ColE7 production, and the rate of polyamine synthesis is directly related to the SOS response. Our experimental results further indicated that exogenous polyamines suppress the expression of TolA, BtuB, OmpF, and OmpC proteins that are responsible for ColE7 uptake. Moreover, two-dimensional gel electrophoresis revealed that the production of two periplasmic proteins, PotD and OppA, is increased in E. coli cells under ColE7 exposure. Based on these observations, we propose that endogenous polyamines may play a dual role in the ColE7 system. Polyamines may participate in initiating the expression of the SOS response of the ColE7 operon and simultaneously down-regulate proteins that are essential for colicin uptake, thus conferring a survival advantage on colicin-producing E. coli under stress conditions in the natural environment.  相似文献   

5.
L S Saxe 《Biochemistry》1975,14(10):2051-2057
A lambda DNA supercoil system has been developed to study the effects of colicin E2 on DNA in vivo. Colicin E2, a protein antibiotic synthesized by strains of coliform bacteria that carry the Col E2 plasmid, had as its most conspicious effect damage to the DNA of sensitive strains. Colicine E2 attacks the supercoiled molecul formed by labeled lambda DNA in superinfected cells as well as it attacks the bacterial DNA. The rate and extent of acid solubilization of the lambda supercoils and of host bacterial DNA induced by E2 treatment are nearly identical. Treatment of superinfected cells with colicin E2 results in the progressive conversion of lambda DNA supercoils to open circles and/or linear full lenght molecules, and subsequently to fragments less than full lambda in size. The first endonucleolytic reactions are single-strand and or double-strand breaks. The rate of supercoil breakdown as well as the final percent supercoils remaining unconverted, the size of the final lambda fragments, and the extent of solubilization are dependent on the multiplicity of colicin used. Additions of trypsin to E2-treated superinfected cells results in a cessation of further breakdown of the lambda molecules, presumably as a result of digestion of accessible colicin molecules. Energy is essential for an early event in colicin E2 action. The host enzymes, endonuclease I and Rec BC, may be instrumental in the nucleolytic process caused by colicin E2: endonuclease I in reaction preceding cell killing and Rec BC in a secondary degradation of the bacterial DNA.  相似文献   

6.
Walker D  Moore GR  James R  Kleanthous C 《Biochemistry》2003,42(14):4161-4171
Colicin E3 is a 60 kDa, multidomain protein antibiotic that targets its ribonuclease activity to an essential region of the 16S ribosomal RNA of Escherichia coli. To prevent suicide of the producing cell, synthesis of the toxin is accompanied by the production of a 10 kDa immunity protein (Im3) that binds strongly to the toxin and abolishes its enzymatic activity. In the present work, we study the interaction of Im3 with the isolated cytotoxic domain (E3 rRNase) and intact colicin E3 through presteady-state kinetics and thermodynamic measurements. The isolated E3 rRNase domain forms a high affinity complex with Im3 (K(d) = 10(-12) M, in 200 mM NaCl at pH 7.0 and 25 degrees C). The interaction of Im3 with full-length colicin E3 under the same conditions is however significantly stronger (K(d) = 10(-14) M). The difference in affinity arises almost wholly from a marked decrease in the dissociation rate constant for the full-length complex (8 x 10(-7) s(-1)) relative to the E3 rRNase-Im3 complex (1 x 10(-4) s(-1)), with their association rates comparable ( approximately 10(8) M(-1) s(-1)). Thermodynamic measurements show that complex formation is largely enthalpy driven. In light of the recently published crystal structure of the colicin E3-Im3 complex, the additional stabilization of the wild-type complex can be ascribed to the interaction of Im3 with the N-terminal translocation domain of the toxin. These observations suggest a mechanism whereby dissociation of the immunity protein prior to translocation into the target cell is facilitated by the loss of the Im3-translocation domain interaction.  相似文献   

7.
Background: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α11–loop12–α21; where 1 represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α31–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.  相似文献   

8.
The primary structures of the immunity (Imm) and lysis (Lys) proteins, and the C-terminal 205 amino acid residues of colicin E8 were deduced from nucleotide sequencing of the 1,265 bp ClaI-PvuI DNA fragment of plasmid ColE8-J. The gene order is col-imm-lys confirming previous genetic data. A comparison of the colicin E8 peptide sequence with the available colicin E2-P9 sequence shows an identical receptor-binding domain but 20 amino acid replacements and a clustering of synonymous codon usage in the nuclease-active region. Sequence homology of the two colicins indicates that they are descended from a common ancestral gene and that colicin E8, like colicin E2, may also function as a DNA endonuclease. The native ColE8 imm (resident copy) is 258 bp long and is predicted to encode an acidic protein of 9,604 mol. wt. The six amino acid replacements between the resident imm and the previously reported non-resident copy of the ColE8 imm ([E8 imm]) found in the ribonuclease-producing ColE3-CA38 plasmid offer an explanation for the incomplete protection conferred by [E8 Imm] to exogenously added colicin E8. Except for one nucleotide and amino acid change in the putative signal peptide sequence, the ColE8 lys structure is identical to that present in ColE2-P9 and ColE3-CA38.  相似文献   

9.
Summary After transfer from a mutagenized host, twenty one ColE2 plasmid mutants were isolated after screening 10,000 clones for abnormal colicin production. Analysis by SDS polyacrylamide slab gel electrophoresis of proteins synthesized after mitomycin C-induction of mutant cultures, indicates that all but two of the mutations are in the structural gene for colicin E2. Of these, nine produce fragments of colicin in both whole cells and minicells and some are suppressed by nonsense suppressors.Studies with a nonsense mutant producing only a small colicin E2 fragment (ColE2-421) suggest that colicin E2 is not involved in plasmid DNA replication, in the control of its own synthesis, or required for cell death when cells become committed to colicin production. The two plasmid mutants outside the colicin gene segregate plasmid-free cells at 33°, 37° and 43°. One segregates fairly rapidly (about 4% per generation) though the colicin-producing cells make normal amounts of colicin, whilst the other segregates more slowly and the colicin-producing cells make much reduced amounts of colicin.  相似文献   

10.
To explore the molecular mechanisms behind the diversification of colicin gene clusters, we examined DNA sequence polymorphism for the colicin gene clusters of 14 colicin E2 (ColE2) plasmids obtained from natural isolates of Escherichia coli. Two types of ColE2 plasmids are revealed, with type II gene clusters generated by recombination between type I ColE2 and ColE7 gene clusters. The levels and patterns of DNA polymorphism are different between the two types. Type I polymorphism is distributed evenly along the gene cluster, while type II accumulates polymorphism at an elevated rate in the 5' end of the colicin gene. These differences may be explained by recombinational origins of type II gene clusters. The pattern of divergence between the ColE2 gene cluster and its close relative ColE9 is not correlated with the pattern of polymorphism within ColE2, suggesting that this gene cluster is not evolving in a neutral fashion. A statistical test confirms significant departures from the predictions of neutrality. These data lend further support to the hypothesis that colicin gene clusters may evolve under the influence of nonneutral forces.   相似文献   

11.
Colicin K exhibited pronounced inhibitory activity against uropathogenic Escherichia coli (UPEC) strains. Low prevalence of colicin K production and a relatively high prevalence of ColE1-like plasmids were determined among 215 UPEC strains from Slovenia. Sequencing of the colicin K-encoding pColK-K235 revealed a mosaic structure and the presence of the insertion sequence IS2.  相似文献   

12.
ColE7 is a nuclease-type colicin released from Escherichia coli to kill sensitive bacterial cells by degrading the nucleic acid molecules in their cytoplasm. ColE7 is classified as one of the group A colicins, since the N-terminal translocation domain (T-domain) of the nuclease-type colicins interact with specific membrane-bound or periplasmic Tol proteins during protein import. Here, we show that if the N-terminal tail of ColE7 is deleted, ColE7 (residues 63-576) loses its bactericidal activity against E.coli. Moreover, TolB protein interacts directly with the T-domain of ColE7 (residues 1-316), but not with the N-terminal deleted T-domain (residues 60-316), as detected by co-immunoprecipitation experiments, confirming that the N-terminal tail is required for ColE7 interactions with TolB. The crystal structure of the N-terminal tail deleted ColE7 T-domain was determined by the multi-wavelength anomalous dispersion method at a resolution of 1.7 angstroms. The structure of the ColE7 T-domain superimposes well with the T-domain of ColE3 and TR-domain of ColB, a group A Tol-dependent colicin and a group B TonB-dependent colicin, respectively. The structural resemblance of group A and B colicins implies that the two groups of colicins may share a mechanistic connection during cellular import.  相似文献   

13.
Thirteen ColE plasmids representing the E2-E7 types have been compared by restriction mapping. Over 80% of their restriction sites were found to be similarly positioned, indicating that these plasmids share a common structure. Three variants are ColE2-CA42 and ColE7-K317, both of which contain 1.8-kb DNA segments in place of a 2.5-kb segment common to the other plasmids, and ColE6-CT14, which has an additional 5.0-kb DNA segment compared to the other plasmids. The colicin (col), immunity (imm), and colicin release (hic) genes of these plasmids have been localized to regions corresponding to those known for ColE3-CA38 and ColE2-P9, with the imm and hic genes adjacent to the 3' end of the col gene. Active colicin is produced from hybrid col genes containing 5' and 3' ends from different E-type plasmids. The 3'-termini of the fused col genes specify the colicin type.  相似文献   

14.
Summary Insertion of DNA at the EcoRI site of ColE1 results in increase of immunity to colicin killing in E. coli harboring such recombinant ColE1 plasmid as compared to E. coli (ColE1). This effect is neither due to cis or trans interactions originating from the inserted foreign DNA fragment, nor to changes in plasmid copy number. This defect in the immunity mechanism is not trans complemented for by wild type ColE1. Increase in immunity can also be obtained by deleting a DNA segment from the ColE1 genome. This segment is 120 bp left to the EcoRI site within the colicin structural gene. It is concluded that the structure of DNA per se, around the EcoRI site, within colicin structural gene, is the structure which affects immunity expression.  相似文献   

15.
A derivative of bacteriophage lambda containing a colicin E1 plasmid replicon was constructed by recombinant DNA techniques. This phage, lambdacol100, has two functional modes of DNA replication; it can replicate via either plasmid or phage replication systems. lambdacol100 has been used to introduce the colicin E1 plasmid replicon into Escherichia coli previously treated with chloramphenicol to block protein synthesis. Under these conditions, lambdacol100 DNA is replicated normally as a colicin E1 plasmid. This suggests that colicin E1 plasmid replication in vivo does not require any plasmid-encoded proteins.  相似文献   

16.
L S Saxe 《Biochemistry》1975,14(10):2058-2063
An in vitro system has been developed to test whether colicin E2 possesses DNase activity. Purified colicin E2 preparations introduced one single-strand scission in supercoiled lambda phage DNA. Glycerol gradient fractionation of colicin E2 supports the association of in vitro action with in vivo cell-killing activity. Colicin E2 preparations also attacked superhelical SV40 DNA yielding open circles and fragments and single-stranded fd DNA molecules causing one or more endonucleolytic breaks. The possible role of contaminating nucleases in the activity of colicin E2 preparations is discussed.  相似文献   

17.
Data suggest a two-receptor model for colicin E1 (ColE1) translocation across the outer membrane of Escherichia coli. ColE1 initially binds to the vitamin B(12) receptor BtuB and then translocates through the TolC channel-tunnel, presumably in a mostly unfolded state. Here, we studied the early events in the import of ColE1. Using in vivo approaches, we show that ColE1 is cleaved when added to whole cells. This cleavage requires the presence of the receptor BtuB and the protease OmpT, but not that of TolC. Strains expressing OmpT cleaved ColE1 at K84 and K95 in the N-terminal translocation domain, leading to the removal of the TolQA box, which is essential for ColE1's cytotoxicity. Supported by additional in vivo data, this suggests that a function of OmpT is to degrade colicin at the cell surface and thus protect sensitive E. coli cells from infection by E colicins. A genetic strategy for isolating tolC mutations that confer resistance to ColE1, without affecting other TolC functions, is also described. We provide further in vivo evidence of the multistep interaction between TolC and ColE1 by using cross-linking followed by copurification via histidine-tagged TolC. First, secondary binding of ColE1 to TolC is dependent on primary binding to BtuB. Second, alterations to a residue in the TolC channel interfere with the translocation of ColE1 across the TolC pore rather than with the binding of ColE1 to TolC. In contrast, a substitution at a residue exposed on the cell surface abolishes both binding and translocation of ColE1.  相似文献   

18.
R J Watson  L P Visentin 《Gene》1982,19(2):191-200
The colicin and immunity genes of plasmid ColE3-CA38 have been localized by characterization of bacteria carrying its cloned restriction fragments. They are within a 3.14-kb EcoRI segment, such that the immunity gene contains the KpnI site, and the colicin gene is adjacent to it within a 2.1-kb KpnI-HincII segment. The immunity gene and one end of the colicin gene are in the region of ColE3-CA38 which is not homologous to the closely related plasmid ColE2-P9. A 0.64-kb PvuI-EcoRI segment of the plasmid adjacent to that containing the colicin and immunity genes was found to augment colicin production on solid media, and also affected the morphology of clearing zones produced by the cells when used as indicators in overlays of stabs of colicin E2 or E7 producers. The 0.64-kb segment was required in its native orientation relative to the 3.14-kb EcoRI segment to cause its effects.  相似文献   

19.
Summary A small ColE1 derivative, pAO2, which replicates like the original ColE1 and confers immunity to colicin E1 on its host cell has been constructed from a quarter region of ColE1 DNA (Oka, 1978). The entire nucleotide sequence of pAO2 (1,613 base pairs) was determined based on its fine cleavage map. The sequence of a similar plasmid, pAO3, carrying additional 70 base pairs was also deduced.The sequence in the region covering the replication initiation site on these plasmids was consistent with those reported for ColE1 by Tomizawa et al. (1977) and by Bastia (1977). DNA sequences indispensable for autonomous replication were examined by constructing plasmids from various restriction fragments of pAO2 DNA. As a result, a region of 436 base pairs was found to contain sufficient information to permit replication. The occurrence of initiation and termination codons and of the ribosome-binding sequence on pAO2 DNA suggests that a polypeptide chain consisting of 113 amino acid residues may be encoded by the region in which the colicin E1 immunity gene has been mapped.Abbreviations ColE1 colicin E1 plasmid - Tris tris-(hydroxymethyl)aminomethane - EDTA ethylenediaminetetraacetate - dNTP deoxyribonucleoside triphosphates - ATP adenosine 5-triphosphate  相似文献   

20.
Previous work has shown that Escherichia coli K12 strains carrying the small, high copy number ColE2-P9 plasmid produce large amounts of colicin and then lyse and release colicin when grown in broth culture containing mitomycin C. Strains carrying the larger, low copy number ColIa-CA53 plasmid produced much less colicin and did not lyse or discharge more than 15% of their colicin when grown under the same conditions. Naturally-occurring Col+ strains and E. coli K12 derivatives carrying different Col plasmids could be classified either as ColE2+-like or ColIa+-like according to whether or not they produced large amounts of colicin and lysed and discharged colicin when grown in the presence of mitomycin, and also by the size and presumed copy number of the Col plasmid they carried. Strains carrying multiple copies of the cloned colicin Ia structural gene produced large amounts of colicin but did not lyse or release colicin when grown in the presence of mitomycin. This result rules out the possibility that high level accumulation of colicin is sufficient to cause lysis. Conditions were sought under which colicin Ia could be released from the producing cells. It was found that mitomycin-treated cultures of strains carrying both ColE2 and ColIa plasmids released both colicins when they lysed, although colicin Ia release occurred later than colicin E2 release. It was also noted that colicin Ia-laden cells released their colicin when diluted into fresh culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号