首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the possible association of 5 polymorphisms in the apoB gene [a 9-bp insertion/deletion length polymorphism in the signal peptide coding region, XbaI, MspI, and EcoRI restriction fragment length polymorphisms (RFLPs) and a 15-bp variable number of tandem repeats (VNTR) region 3 to the apoB gene] with plasma concentrations of cholesterol, high density lipoprotein cholesterol, triglycerides and apolipoprotein B-100 in 464 randomly selected Danish men born in 1948. The XbaI RFLP and the insertion/deletion length polymorphism were significantly associated with plasma concentration and inter-individual variation of cholesterol and apolipoprotein B-100 (1.77% and 1.37% of sample variance in cholesterol, and 1.4% and 1.39% of sample variance in apoB). The association was particularly strong in men with a body mass index less than 25 kg/m2 (the mean value of the whole cohort) (3.43% and 2.93% of sample variance in cholesterol, and 3.1% and 2.13% of sample variance in apoB). The XbaI RFLP and the insertion/deletion length polymorphism were in strong linkage disequilibrium, explaining why independent associations of these two polymorphisms with cholesterol and apoB could not be established. There were no other associations between apoB gene polymorphisms and lipoprotein components.  相似文献   

2.
To determine the putative metabolic relevance of preheparin versus postheparin lipoprotein lipases, the relationships of both pre- and postheparin lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) to plasma triglycerides, low density lipoprotein (LDL) cholesterol, and high density lipoprotein (HDL) cholesterol were determined in 93 men. Relationships of preheparin lipases to their respective postheparin lipases were also examined. Although relationships between the preheparin lipases and plasma triglycerides and HDL cholesterol were not apparent, both preheparin LPL (rs = 0.306, P = 0.0036) and HTGL (rs = 0.348, P = 0.0008) correlated with LDL cholesterol, a relationship not seen with either postheparin lipase. Both postheparin LPL (rs = 0.515, P = 0.0001) and postheparin HTGL (rs = -0.228, P = 0.0028), however, correlated with HDL cholesterol. In addition, postheparin LPL was inversely correlated with postheparin HTGL (rs = -0.363, P = 0.0003), whereas the relationship between preheparin LPL and preheparin HTGL was positive (rs = 0.228, P = 0.0009). Overall, these data point to differences between pre- and postheparin lipases in their relationships to lipoproteins, and one to another. The relationships of LDL cholesterol to both preheparin LPL and HTGL suggest that displacement of active forms of both lipases from their endothelial binding sites may mark triglyceride-rich lipoproteins or their remnants for metabolic pathways that lead to LDL.  相似文献   

3.
Adipose tissue lipoprotein lipase (LPL) activity is under strong genetic control in both mice and humans. This study determines whether common DNA variation in the LPL gene (PvuII and HindIII polymorphisms) is associated with adipose tissue LPL activity and metabolic risk factors in a homogeneous population of 75 overweight postmenopausal women (body mass index >25 kg/m2; age: 51-69 years old). The allele frequencies for the presence of the cut-sites for LPL HindIII and PvuII were 0.71 and 0.49, respectively. There were no associations between the HindIII polymorphism and any of the measured variables. Age, body mass index, percent body fat, waist-hip ratio, visceral and subcutaneous fat area, and gluteal (GLT) and abdominal (ABD) adipocyte size did not differ by LPL PvuII genotype. However, adipose tissue LPL activity at both GLT and ABD sites was higher in women without the LPL PvuII cut-site (-/-) compared with women who were heterozygous (+/-) or homozygous (+/+) for the cut-site (P<0.05). Total and LDL cholesterol were lower in women without the LPL PvuII cut-site (-/-) compared with women who were heterozygous or homozygous for the cut-site (P<0.05), whereas triglyceride and HDL levels were similar between LPL PvuII genotypes. Fasting glucose, but not insulin, was lower in women without the LPL PvuII cut-site (-/-). These data suggest that the LPL PvuII polymorphism is a possible marker for a functional mutation that is found in the LPL gene and that alters LPL activity in older overweight women.  相似文献   

4.
5.
Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of TG-rich lipoproteins. To elucidate the physiological roles of LPL in lipid and lipoprotein metabolism, we generated transgenic rabbits expressing human LPL. In postheparinized plasma of transgenic rabbits, the human LPL protein levels were about 650 ng/ml, and LPL enzymatic activity was found at levels up to 4-fold greater than that in nontransgenic littermates. Increased LPL activity in transgenic rabbits was associated with as much as an 80% decrease in plasma triglycerides and a 59% decrease in high density lipoprotein-cholesterol. Analysis of the lipoprotein density fractions revealed that increased expression of the LPL transgene resulted in a remarkable reduction in the level of very low density lipoproteins as well as in the level of intermediate density lipoproteins. In addition, LDL cholesterol levels in transgenic rabbits were significantly increased. When transgenic rabbits were fed a cholesterol-rich diet, the development of hypercholesterolemia and aortic atherosclerosis was dramatically suppressed in transgenic rabbits. These results demonstrate that systemically increased LPL activity functions in the metabolism of all classes of lipoproteins, thereby playing a crucial role in plasma triglyceride hydrolysis and lipoprotein conversion, and that overexpression of LPL protects against diet-induced hypercholesterolemia and atherosclerosis.  相似文献   

6.
The microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins from liver and intestine. We set out to study the phenotypic modulation of all common genetic variants in the MTP gene. In addition, we aimed at characterizing the association between the various polymorphisms. A total of 564 healthy men were genotyped for the MTP -493 G/T, -400 A/T, and -164 T/C promoter polymorphisms, as well as the Q/H 95, I/T 128, Q/E 244, and H/Q 297 missense polymorphisms. The -493 G/T, -164 T/C, and I/T 128 polymorphisms showed to be in almost complete linkage disequilibrium. Subjects homozygous for the less common -493 T, -164 C, and T 128 alleles showed significantly lower plasma total and LDL cholesterol levels and plasma LDL apoB levels, and also significantly higher body mass index (BMI) and plasma insulin levels compared with carriers of the common alleles. The associations between plasma total cholesterol and MTP -493 genotype was verified in a cohort consisting of 1,117 disease-free control subjects of the West of Scotland Coronary Prevention Study (WOSCOPS). None of the other polymorphisms showed any significant change in either lipid and lipoprotein levels or anthropometric variables.In summary, two promoter polymorphisms and one missense polymorphism in the MTP gene alter plasma total and LDL cholesterol levels, plasma LDL apoB levels, BMI, and insulin levels. This may, in turn, have implications for genetic regulation of cardiovascular risk factors.  相似文献   

7.
8.
OBJECTIVE: To determine how lipoprotein lipase mass in the pre-heparin plasma is affected by body fat distribution, which is known to be closely related to lipid disorder, either directly or through insulin resistance. SUBJECTS: A total of 57 subjects consisting of 50 hyperlipidemic and 7 normolipidemic subjects (age 54 +/- IIy; 31 men, 26 women; body mass index 24+/- 2.5 kg/m2; serum total cholesterol 6.4+/-1.5 mmol/l; triglycerides, 2.4 +/- 1.7 mmol/l; HDL-cholesterol 1.3 +/- 0.5 mmol/l) were enrolled. MEASUREMENTS: We investigated the correlation between pre-heparin plasma LPL mass and intra-abdominal visceral fat area (or subcutaneous fat area) evaluated by computed tomography, and serum lipids and lipoproteins. RESULTS: Pre-heparin plasma LPL mass correlated inversely against intra-abdominal visceral fat area (r = - 0.51, p < 0.0001) and body mass index (r = - 0.46, p = 0.0003), but did not show any significant correlation with subcutaneous fat area. Pre-heparin plasma LPL mass had a positive correlation with serum high density lipoprotein cholesterol (r = 0.45, p = 0.0004) and a negative correlation against serum triglycerides (r = - 0.48, p = 0.0002). CONCLUSIONS: Pre-heparin plasma LPL mass is closely associated with intra-abdominal fat distribution, and the measurement of its value gives useful information concerning metabolic disorder.  相似文献   

9.
Lipoprotein lipase (LPL) is known to play a crucial role in lipoprotein metabolism by hydrolyzing triglycerides; however its role in atherogenesis has yet to be determined. We have previously shown that low density lipoprotein receptor knockout mice overexpressing LPL are resistant to diet-induced atherosclerosis due to the suppression of remnant lipoproteins. Plasma lipoproteins and atherosclerosis of apolipoprotein (apo) E knockout mice which overexpress the human LPL transgene (LPL/APOEKO) were compared with those of control apoE knockout mice (APOEKO). On a normal chow diet, LPL/APOEKO mice showed marked suppression of the plasma triglyceride levels compared with APOEKO mice (54 vs. 182 mg/dl), but no significant changes in plasma cholesterol and apoB levels. Non-high density lipoproteins (HDL) from LPL/APOEKO mice had lower triglyceride content, a smaller size, and a more positive charge compared with those from APOEKO mice. Cholesterol, apoA-I, and apoA-IV were increased in HDL. Although both groups developed hypercholesterolemia to a comparable degree in response to an atherogenic diet, the LPL/APOEKO mice developed 2-fold smaller fatty streak lesions in the aortic sinus compared to the APOEKO mice. In conclusion, overproduction of LPL is protective against atherosclerosis even in the absence of apoE.  相似文献   

10.
The lipoprotein lipase (LPL) enzyme plays a major role in lipid metabolism, primarily by regulating the catabolism of triglyceride (TG)-rich lipoprotein particles. The gene for LPL is an important candidate for affecting the risk of atherlosclerosis in the general population. Previously, we have shown that the HindIII polymorphism in intron 8 of the LPL gene is associated with plasma TG and HDL-cholesterol variation in Hispanics and non-Hispanic whites (NHWs). However, this polymorphism is located in an intron and hence may be in linkage disequilibrium with a functional mutation in the coding region or intron-exon junctions of the LPL gene. The aim of this study was to initially screen the LPL coding region and the intron-exon junctions by single-strand conformation polymorphism (SSCP) analysis for mutation detection in a group of 86 individuals expressing the phenotype of high TG/low HDL, followed by association studies in a population-based sample of 1,014 Hispanics and NHWs. Four sequence variations were identified by SSCP and DNA sequencing in the coding region of the gene, including two missense mutations (D9N in exon 2 and N291S in exon 6), one samesense mutation (V108V in exon 3), and one nonsense mutation (S447X in exon 9). Multiple regression analyses, including these four mutations and the HindIII polymorphic site, indicate that the association of the HindIII site with plasma TG (P=0.001 in NHWs and P=0.002 in Hispanics) and HDL-cholesterol (P=0.007 in NHWs and P=0.127 in Hispanics) is independent of all other LPL variable sites examined. These observations reinforce the concept that the intronic 8 HindIII site is functional by itself and provide a strong rationale for future comprehensive functional studies to delineate its biological significance.  相似文献   

11.
Hepatic lipase encoded by the hepatic lipase gene (LIPC) is involved in the metabolism of several lipoproteins. Four promoter polymorphisms in LIPC have been found to be in complete disequilibrium and associated with high density lipoprotein cholesterol (HDL-C) and apolipoprotein (apo)A-I levels in both white and black populations. We investigated the association between the promoter polymorphism and lipid profiles as well as anthropometric phenotypes in African American men in the Coronary Artery Risk Development in Young Adults study. We performed serial cross-sectional analyses and longitudinal analyses of lipids from 578 subjects in five examinations over 10 years of follow-up. Results showed that the allele frequency (0.52) in our black population was consistent with that reported in black subjects but much higher than that reported (approximately 0.2) in white populations. Analysis of covariance tests of the three genotypic means in each examination showed that the P values ranged from 0.01 to 0.08 for HDL-C (except P = 0.54 in the fourth examination), from 0.006 to 0.01 for HDL(2)-C, and from 0.06 to 0.07 for apoA-I. Mean HDL(3)-C levels were essentially identical among the three genotypes. Total cholesterol, low density lipoprotein cholesterol (LDL-C), triglycerides, and apoB, which are mainly involved in the very low density lipoprotein-LDL pathway, were not significantly different according to the promoter polymorphism, except for triglycerides in the third examination (P = 0.01). No significant association was found between anthropometric phenotypes and the LIPC polymorphism in any of five examinations. The change of the anthropometric variables was not significantly associated with genotypes. In conclusion, our results indicated that the LIPC promoter polymorphism has exclusive effects on HDL(2)-C but not HDL(3)-C levels.  相似文献   

12.
We have determined the genotypes of two common polymorphisms in the lipoprotein lipase (S447X) and hepatic lipase (-480C/T) genes in a cohort of 285 representative selected Czech probands (131 male and 154 female), examined in 1988 and reinvestigated in 1996. The genotype distributions of both polymorphisms were in Hardy-Weinberg equilibrium and did not differ between male and female subjects. The rare allele frequency of the lipoprotein lipase polymorphism did not differ significantly from the other European populations. Compared to the German populations, the frequency of the hepatic lipase -480T allele was significantly higher in the Czech group (20% vs. 36%, p<0.0001). There were no significant associations between the lipoprotein lipase gene variants and lipid parameters measured either in 1988, or in 1996 or with changes of lipid parameters over the 8-year period. The carriers of the T-480 allele of the hepatic lipase polymorphism were found to have higher HDL cholesterol levels (p=0.02). However, this difference was confined to female subjects only. The male carriers of the -480T allele had higher concentrations of total cholesterol (p=0.03) as compared to CC-480 subjects. Both associations were observed in 1996 only. In the Slavic Czech population, a common polymorphism in the hepatic lipase gene (-480C/T), but not in the lipoprotein lipase gene (S447X), is a significant determinant of plasma HDL cholesterol in females and plasma total cholesterol in males and indicates the importance of gender-associated effects in the genetic determinations of plasma lipids.  相似文献   

13.
脂蛋白酯酶与动脉粥样硬化   总被引:3,自引:0,他引:3  
脂蛋白酯酶(1ipopmtein lipase,LPL)是调节脂蛋白代谢的一种关键酶,如具有水解血浆脂蛋白中三酰甘油的作用等.体内LPL减少会导致血三酰甘油升高和高密度脂蛋白胆固醇降低,增加患动脉粥样硬化的危险.通过提高LPL的活性可以抑制动脉粥样硬化的发生发展.已有的研究说明NO-1886促进心肌和脂肪组织LPL mRNA表达,提高心肌、脂肪组织、骨骼肌和血液中LPL活性,因而改善脂蛋白代谢,抑制动脉粥样硬化.  相似文献   

14.
Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.  相似文献   

15.
We report here a study of the developmental and genetic control of tissue-specific expression of lipoprotein lipase, the enzyme responsible for hydrolysis of triglycerides in chylomicrons and very low density lipoproteins. Lipoprotein lipase (LPL) mRNA is present in a wide variety of adult rat and mouse tissues examined, albeit at very different levels. A remarkable increase in the levels of LPL mRNA occurs in heart over a period of several weeks following birth, closely paralleling developmental changes in lipase activity and myocardial beta-oxidation capacity. Large increases in LPL mRNA also occur during differentiation of 3T3L1 cells to adipocytes. As previously reported, at least two separate genetic loci control the tissue-specific expression of LPL activity in mice. One of the loci, controlling LPL activity in heart, is associated with an alteration in LPL mRNA size, while the other, controlling LPL activity in adipose tissue, appears to affect the translation or post-translational expression of LPL. To examine whether these genetic variations are due to mutations of the LPL structural locus, we mapped the LPL gene to a region of mouse chromosome 8 using restriction fragment-length polymorphisms and analysis of hamster-mouse somatic cell hybrids. This region is homologous to the region of human chromosome 8 which contains the human LPL gene as judged by the conservation of linked genetic markers. Genetic variations affecting LPL expression in heart cosegregated with the LPL gene, while variations affecting LPL expression in adipose tissue did not. Furthermore, Southern blotting analysis indicates that LPL is encoded by a single gene and, thus, the genetic differences are not a consequence of independent regulation of two separate genes in the two tissues. These results suggest the existence of cis-acting elements for LPL gene expression that operate in heart but not adipose tissue. Our results also indicate that two genetic mutations resulting in deficiencies of LPL in mice, the W mutation on chromosome 5 and the cld mutation on mouse chromosome 17, do not involve the LPL structural gene locus. Finally, we show that the gene for hepatic lipase, a member of a gene family with LPL, is unlinked to the gene for LPL. This indicates that combined deficiencies of LPL and hepatic lipase, observed in humans as well as in certain mutant strains of mice, do not result from focal disruptions of a cluster of lipase genes.  相似文献   

16.
Two novel mutations in the lipoprotein lipase (LPL) gene are described in an Austrian family: a splice site mutation in intron 1 (3 bp deletion of nucleotides -2 to -4) which results in skipping of exon 2, and a missense mutation in exon 5 which causes an asparagine for histidine substitution in codon 183 and complete loss of enzyme activity. A 5-year-old boy who exhibited all the clinical features of primary hyperchylomicronemia was a compound heterozygote for these two mutations. Nine other family members were investigated: seven were heterozygotes for the splice site mutation, one was a heterozygote for the missense mutation, and one had two wild-type alleles of the LPL gene. LPL activity in the post-heparin plasma of the heterozygotes was reduced to 49;-79% of the mean observed in normal individuals. Two of the heterozygotes had extremely high plasma triglyceride levels; in three of the other heterozygotes the plasma triglycerides were also elevated. As plasma triglycerides in carriers of one defective LPL allele can be normal or elevated, the heterozygotes of this family have been studied for a possible additional cause of the expression of hypertriglyceridemia in these subjects. Body mass index, insulin resistance, mutations in other candidate genes (Asn291Ser and Asp9Asn in the LPL gene, apoE isoforms, polymorphisms in the apoA-II gene and in the apoAI-CIII-AIV gene cluster, and in the IRS-1 gene) could be ruled out as possible factors contributing to the expression of hypertriglyceridemia in this family. A linkage analysis using the allelic marker D1S104 on chromosome 1q21;-q23 suggested that a gene in this region could play a role in the expression of hypertriglyceridemia in the heterozygous carriers of this family, but the evidence was not sufficiently strong to prove this assumption. Nevertheless, this polymorphic marker seems to be a good candidate for further studies.  相似文献   

17.
Apolipoproteins E and CI are the predominant components of triglyceride-rich lipoproteins. The genes are located in one gene cluster and both are polymorphic. Three allelic (epsilon2, epsilon3 and epsilon4) polymorphisms of the APOE gene influence plasma cholesterol levels. The distribution of these alleles differ between ethnic groups. PCR genotyping was used to determine the APOE and APOCI allele incidence in a representative group of 653 probands (302 men and 351 women) of Czech origin. The observed relative frequencies for the epsilon2, epsilon3 and epsilon4 alleles were 7.1 %, 82.0 % and 10.9 %, respectively, and are similar to other middle European populations. APO epsilon4 carriers have the highest and APO epsilon2 carriers the lowest levels of plasma total cholesterol (p<0.0001) and LDL cholesterol (p<0.0001). The frequency of the insertion (I) allele (HpaI restriction site present) of the APOCI polymorphism was 18.5 %. APOCI I/I homozygotes have the highest level of triglycerides (p<0.003). An almost complete linkage disequilibrium of the insertion allele of APOCI with the APOE alleles epsilon2 and epsilon4 has been detected and suggests that the deletion in the APOCI gene probably follows the deriving of all three APOE alleles on the APO epsilon3 allele background.  相似文献   

18.
Oral nicotine induces an atherogenic lipoprotein profile   总被引:3,自引:0,他引:3  
Male squirrel monkeys were used to evaluate the effect of chronic oral nicotine intake on lipoprotein composition and metabolism. Eighteen yearling monkeys were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine primates given liquid diet supplemented with nicotine at 6 mg/kg body wt/day. Animals were weighed biweekly, plasma lipid, glucose, and lipoprotein parameters were measured monthly, and detailed lipoprotein composition, along with postheparin plasma lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) activity, was assessed after 24 months of treatment. Although nicotine had no effect on plasma triglyceride or high density lipoproteins (HDL), the alkaloid caused a significant increase in plasma glucose, cholesterol, and low density lipoprotein (LDL) cholesterol plus protein while simultaneously reducing the HDL cholesterol/plasma cholesterol ratio and animal body weight. Levels of LDL precursors, very low density (VLDL) and intermediate density (IDL) lipoproteins, were also lower in nicotine-treated primates while total postheparin lipase (LPL + HTGL) activity was significantly elevated. Our data indicate that long-term consumption of oral nicotine induces an atherogenic lipoprotein profile (increases LDL, decreases HDL/total cholesterol ratio) by enhancing lipolytic conversion of VLDL to LDL. These results have important health implications for humans who use smokeless tobacco products or chew nicotine gum for prolonged periods.  相似文献   

19.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

20.
We have tested for evidence of linkage between the genetic loci determining concentrations and composition of plasma high density lipoproteins (HDL) with the genes for the major apolipoproteins and enzymes participating in lipoprotein metabolism. These genes include those encoding various apolipoproteins (apo), including apoA-I, apoA-II, apoA-IV, apoB, apoC-I, apoC-II, apoC-III, apoE, and apo(a), cholesteryl ester transfer protein (CETP), HDL-binding protein, lipoprotein lipase, and the low density lipoprotein (LDL) receptor. Polymorphisms of these genes, and nearby highly polymorphic simple sequence repeat markers, were examined by quantitative sib-pair linkage analysis in 30 coronary artery disease families consisting of a total of 366 individuals. Evidence for linkage was observed between a marker locus D16S313 linked to the CETP locus and a locus determining plasma HDL-cholesterol concentration (P = 0.002), and the genetic locus for apoA-II and a locus determining the levels of the major apolipoproteins of HDL, apoA-I and apoA-II (P = 0.009 and 0.02, respectively). HDL level was also influenced by the variation at the apo(a) locus on chromosome 6 (P = 0.02). Thus, these data indicate the simultaneous involvement of at least two different genetic loci in the determination of the levels of HDL and its associated lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号