首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pyridoxal phosphate, the cofactor of glycogen phosphorylase, fulfils the criteria needed of a turnover label for this enzyme. The decay of protein-bound label following administration of [3H]pyridoxine is a good index of the rate of degradation of the enzyme in vivo. This method has been applied to the study of catabolism of the enzyme in normal, denervated and dystrophic mouse skeletal muscle. In both of the pathological conditions the enzyme is degraded more rapidly than normal.  相似文献   

3.
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than in the morning. This diurnal variation is attributed to motivational, peripheral and central factors, and higher core and, possibly, muscle temperatures in the evening. This study investigated whether increasing morning rectal temperatures to evening resting values, by active or passive warm-ups, leads to muscle force production and power output becoming equal to evening values in motivated subjects. Ten healthy active males (mean ± SD: age, 21.2 ± 1.9 yrs; body mass, 75.4 ± 8 kg; height, 1.76 ± .06 m) completed the study, which was approved by the University Ethics Committee. The subjects were familiarized with the techniques and protocol and then completed four sessions (separated by at least 48 h): control morning (07:30 h) and evening (17:30 h) sessions (with an active 5-min warm-up) and then two further sessions at 07:30 h but proceeded by an extended active or passive warm-up to raise rectal temperature to evening values. These last two sessions were counterbalanced in order of administration. During each trial, three measures of handgrip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19 rad.s?1 through a 90° range of motion), and four measures of maximal voluntary contraction (MVC) on an isometric ergometer (utilizing the twitch-interpolation technique) were performed. Rectal and intra-aural temperatures, ratings of perceived exertion (RPE) and thermal comfort (TC) were measured. Measurements were made after the subjects had reclined for 30 min and after the warm-ups and prior to the measurement of handgrip and isokinetic and isometric ergometry. Muscle temperature was taken after the warm-up and immediately before the isokinetic and MVC measurements. Warm-ups were either active (cycle ergometer at 150 W) or passive (resting in a room at 35°C, relative humidity 45%). Data were analyzed using analysis of variance models with repeated measures. Rectal and intra-aural temperatures were higher at rest in the evening (.56°C and .74°C; p < .05) than in the morning, but there were no differences after the active or passive warm-ups, the subjects' ratings of thermal comfort reflecting this. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (~.31°C; p < .05). Grip strength, isokinetic knee flexion for peak torque and peak power at 1.05 rad.s?1, and knee extension for peak torque at 4.19 rad.s?1 all showed higher values in the evening. All other measures of strength or power showed a trend to be higher in the evening ( .10 > p > .05). There was no significant effect of active or passive warm-ups on any strength or power variable, and subjects reported maximal values for effort for each strength measure. In summary, effects of time of day were seen in some measures of muscle performance but, in this population of motivated subjects, there was no evidence that increasing morning rectal temperature to evening values by active or passive warm-up increased muscle strength to evening values. (Author correspondence: )  相似文献   

4.
The structures and functions of the various subdivisions of the membrane systems of muscle are reviewed. Morphometric data have been recalculated using functional definitions of the membranes as identified by their proteins. Thus, the junctional coupling between the sarcoplasmic reticulum and T system is separated from the remaining longitudinal sarcoplasmic reticulum that bears the calcium ATPase protein. In addition, the morphometry of the membrane systems is related to the various muscle fiber types as defined histochemically and by protein isoforms. The relation of isomyosin type and membrane quantities are compared for guinea pig, chicken, frog, and lobster skeletal muscles and rat and rabbit cardiac muscles. Fiber plasticity is considered in terms of the mixing and matching of amounts and kinds of membranes and proteins.  相似文献   

5.
Species- and muscle type-dependence of perinatal isomyosin transitions.   总被引:1,自引:0,他引:1  
The progressive transition from developmental to adult myosin isoforms during perinatal development was quantified in four muscles (diaphragm, gastrocnemius medialis, masseter and tongue) of four mammals (guinea-pig, hamster, rabbit and rat). It was observed that the timing of transition varied for each muscle, and differed according to the mammal as well. This suggests that the synthesis of adult myosin isoforms may be partly related to the specialized contractile function of a given muscle in a given species.  相似文献   

6.
The secretion of proteins labelled by incorporation of radioactive amino acids was studied in innervated and 10 to 13-day-denervated mouse skeletal muscle. The secretion of 3H-leucine-labelled proteins, expressed per mg muscle wet weight, increased after denervation, and the kinetics of the secretory process was also altered in denervated muscle. Separation of secreted 35S-methionine-labelled proteins by sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by autoradiography revealed some denervation-induced alterations in the pattern of secreted proteins. The secretion from both innervated and denervated muscle was highly temperature sensitive and was reversibly inhibited by brefeldin A, a drug that blocks forward membrane transport from the endoplasmic reticulum/Golgi apparatus. This drug was also found to inhibit the uptake of fluorescein isothiocyanate-labelled dextran in denervated muscle but had no effect on the endocytotic activity of innervated muscle. This lends support to the hypothesis that the increased endocytotic activity in denervated muscle is coupled to a high secretory activity.Abbreviations BF A Brefeldin A - dpm Disintegrations per minute - EDL extensor digitorum longus - FITC fluorescein isothiocyanate - LDH lactate dehydrogenase - SDS-P AGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

7.
8.
The capillary bed in denervated muscle   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
The purpose of this experiment was to investigate the effects of 12.5 days of zero gravity (0 g) exposure (Cosmos 1887 Biosputnik) on the enzymatic properties, protein content, and isomyosin distribution of the myofibril fraction of the slow-twitch vastus intermedius (VI) and the fast-twitch vastus lateralis (VL) muscles of adult male rats. Measurements were obtained on three experimental groups (n = 5 each group) designated as flight group (FG), vivarium control (VC), and synchronous control (SC). Body weight of the FG was significantly lower than that of the two control groups (P less than 0.05). Compared with the two control groups, VI weight was lower by 23% (P less than 0.10), whereas no such pattern was apparent for the VL muscle. Myofibril yields (mg protein/g muscle) in the VI were 35% lower in the FG than in controls (P less than 0.05), whereas no such pattern was apparent for the VL muscle. When myofibril yields were expressed on a muscle basis (mg/g x muscle weight), the loss of myofibril protein was more exaggerated and suggests that myofibril protein degradation is an early event in the muscle atrophy response to 0 g. Analysis of myosin isoforms indicated that slow myosin (Sm) was the primary isoform lost in the calculated degradation of total myosin. No evidence of loss of the fast isomyosins was apparent for either muscle following spaceflight. Myofibril ATPase activity of the VI was increased in the FG compared with controls, which is consistent with the observation of preferential Sm degradation. These data suggest that muscles containing a high percentage of slow-twitch fibers undergo greater degrees of myofibril protein degradation than muscles containing predominantly fast-twitch fibers in response to a relatively short period of 0 g exposure, and the primary target appears to be the Sm molecule.  相似文献   

12.
Galectin-1 is a soluble carbohydrate-binding protein with a particularly high expression in skeletal muscle. Galectin-1 has been implicated in skeletal muscle development and in adult muscle regeneration, but also in the degeneration of neuronal processes and/or in peripheral nerve regeneration. Exogenously supplied oxidized galectin-1, which lacks carbohydrate-binding properties, has been shown to promote neurite outgrowth after sciatic nerve sectioning. In this study, we compared the expression of galectin-1 mRNA and immunoreactivity in innervated and denervated mouse and rat hind-limb and hemidiaphragm muscles. The results show that galectin-1 mRNA expression and immunoreactivity are up-regulated following denervation. The galectin-1 mRNA is expressed in the extrasynaptic and perisynaptic regions of the muscle, and its immunoreactivity can be detected in both regions by Western blot analysis. The results are compatible with a role for galectin-1 in facilitating reinnervation of denervated skeletal muscle.  相似文献   

13.
Acetylcholine receptor in normal and denervated slow and fast muscle   总被引:7,自引:0,他引:7  
R R Almon  C G Andrew  S H Appel 《Biochemistry》1974,13(27):5522-5528
  相似文献   

14.
15.
Semaphorins are secreted or transmembrane proteins important for axonal guidance and for the structuring of neuronal systems. Semaphorin 6C, a transmembrane Semaphorin, has growth cone collapsing activity and is expressed in adult skeletal muscle. In the present study the expression of Semaphorin 6C mRNA and immunoreactivity has been compared in innervated and denervated mouse hind-limb and hemidiaphragm muscles. Microscopic localization of immunoreactivity was studied in innervated and denervated rat skeletal muscle. The results show that Semaphorin 6C mRNA expression and immunoreactivity on Western blots are down-regulated following denervation. The mRNA of Semaphorin 6C as well as immunoreactivity determined by Western blots are expressed in extrasynaptic as well as perisynaptic regions of muscle. Immunohistochemical studies, however, show Semaphorin 6C-like immunoreactivity to be concentrated at neuromuscular junctions. The results suggest a role for Semaphorin 6C in neuromuscular communication.  相似文献   

16.
17.
《The Journal of cell biology》1994,127(5):1435-1445
Denervation of skeletal muscle results in dramatic remodeling of the cellular and molecular composition of the muscle connective tissue. This remodeling is concentrated in muscle near neuromuscular junctions and involves the accumulation of interstitial cells and several extracellular matrix molecules. Given the role of extracellular matrix in neurite outgrowth and synaptogenesis, we predict that this remodeling of the junctional connective tissue directly influences the regeneration of the neuromuscular junction. As one step toward understanding the role of this denervation-induced remodeling in synapse formation, we have begun to look for the signals that are involved in initiating the junctional accumulations of interstitial cells and matrix molecules. Here, the role of muscle inactivity as a signal was examined. The distributions of interstitial cells, fibronectin, and tenascin were determined in muscles inactivated by presynaptic blockade of muscle activity with tetrodotoxin. We found that blockade of muscle activity for up to 4 wk produced neither the junctional accumulation of interstitial cells nor the junctional concentrations of tenascin and fibronectin normally present in denervated frog muscle. In contrast, the muscle inactivity induced the extrajunctional appearance of two synapse-specific molecules, the acetylcholine receptor and a muscle fiber antigen, mAb 3B6. These results demonstrate that the remodeling of the junctional connective tissue in response to nerve injury is a unique response of muscle to denervation in that it is initiated by a mechanism that is independent of muscle activity. Thus connective tissue remodeling in denervated skeletal muscle may be induced by signals released from or associated with the nerve other than the evoked release of neurotransmitter.  相似文献   

18.
We analyzed the fiber-type composition of the soleus muscle in rats and mice to determine whether the adult proportion of fiber types is fixed soon after birth or whether it changes during postnatal maturation. We examined muscles from animals varying in age from 1 week to 1 year using monoclonal antibodies that distinguish between fast and slow isoforms of myosin heavy chains. In cross sections of unfixed muscle containing profiles of all myofibers in the muscle, we counted the fibers that stained with antibodies to fast myosin, and in adjacent sections, those that stained positive with an antibody to slow myosin. We also counted the total number of fibers in each section. Rat soleus contained about 2500 myofibers, and mouse about 1000 at all ages studied, suggesting that myogenesis ceases in soleus by 1 week after birth or sooner. In mouse soleus, the relative proportions of fibers staining positive with fast and slow myosin antibodies were similar at all ages studied, about 60%–70% being fast and 30%–40% slow. In rat soleus, however, the proportions of fast antibody-positive and slow antibody-positive fibers changed dramatically during postnatal maturation. At 1 week after birth, about 50% of rat soleus fibers stained with fast myosin antibodies, whereas between 1 and 2 months this value fell to about 10%. In mouse, about 10% of fibers at 1 week, but none at 1 year, reacted with both fast and slow antibodies, whereas in rat, fewer than 3% bound both antibodies to a significant degree at 1 week. It is puzzling why, in rat soleus, the majority of apparently fast fibers present at 1 week is converted to a slow phenotype, whereas in mouse soleus the predominant change appears to be the suppression of fast myosin expression in a subset of fibers that expresses both myosin types at 1 week. It is possible that this may be related to differences in size and the amount of body growth between these two species.  相似文献   

19.
Muscle weights, Ca-ATPase activity and calcium-binding proteins were studied after denervation in rat extensor digitorum longus (EDL) and soleus (Sol) muscles. Muscle weights decreased progressively as a function of denervation time: after 28 days EDL weight diminished by 70% and Sol weight by 47%. Ca-ATPase activity and calsequestrin were quite reduced in control Sol as compared to the control EDL. Denervation caused a considerable reduction in Ca-ATPase and calsequestrin in EDL, making it resemble the control Sol.  相似文献   

20.
The ultrastructure of normal and denervated human facial muscle   总被引:1,自引:0,他引:1  
The ultrastructure of normal human facial muscles from 25 nonparalytic and 17 paralytic patients revealed normal features in nondenervated human facial muscles, identical to the fine structure of other normal human and mammalian cross-striated muscle fibers. However, in denervated facial muscle, a broad spectrum of ultrastructural lesions had affected sarcomeres, abnormal inclusions, and organelles. A large variety of inclusion bodies, some of which have not been described, were also found. The spectrum of ultrastructural changes showed no dependence on the length of the denervation period. There were no inclusion bodies in all the normal facial muscle biopsies. To our knowledge, this study represents the first systematic electron microscopic investigation of normal and denervated human facial muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号