首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
y     
Abstract

The influence of the redox state potential on heart activity was examined. It was established that

(1) Increasing the redox state potential by redox agents, the pacemaker activity gradually begins to diminish. This diminution manifests itself primarily in amplitude of contractions.

(2) Increasing the redox state potential, acetylcholine effects a positive and not a negative inotropic effect, in other words, the oxidants cause a complete inversion of the typical ACh action.

(3) Decreasing the redox state potential, the negative inotropic effect is increased.

(4) Following an oxidant pretreatment, the Na+ ‐Ca2+ input through electro‐genie channels is decreased, but the K+ efflux is increased.

(5) Reductant pretreatment results in an inverse effect.

As the redox state potential of the heart tissue is by 60 mV lower than that of the skeletal muscles — in other words, more reducing in character—the presumed role of the actual redox state potential in evoking pacemaker activity and causing negative inotropic action of acetylcholine in heart is discussed.  相似文献   

2.
Reactive oxygen species mediate cellular signaling and neuropathologies. Hence, there is tremendous interest in monitoring (sub)cellular redox conditions. We evaluated the genetically engineered redox sensor HyPer in mouse hippocampal cell cultures. Two days after lipofection, neurons and glia showed sufficient expression levels, and H2O2 reversibly and dose-dependently increased the fluorescence ratio of cytosolic HyPer. Yet, repeated H2O2 treatment caused progressively declining responses, and with millimolar doses an apparent recovery started while H2O2 was still present. Although HyPer should be H2O2 specific, it seemingly responded also to other oxidants and altered cell-endogenous superoxide production. Control experiments with the SypHer pH sensor confirmed that the HyPer ratio responds to pH changes, decreasing with acidosis and increasing during alkalosis. Anoxia/reoxygenation evoked biphasic HyPer responses reporting apparent reduction/oxidation; replacing Cl exerted only negligible effects. Mitochondria-targeted HyPer readily responded to H2O2—albeit less intensely than cytosolic HyPer. With ratiometric two-photon excitation, H2O2 increased the cytosolic HyPer ratio. Time-correlated fluorescence-lifetime imaging microscopy (FLIM) revealed a monoexponential decay of HyPer fluorescence, and H2O2 decreased fluorescence lifetimes. Dithiothreitol failed to further reduce HyPer or to induce reasonable FLIM and two-photon responses. By enabling dynamic recordings, HyPer is superior to synthetic redox-sensitive dyes. Its feasibility for two-photon excitation also enables studies in more complex preparations. Based on FLIM, quantitative analyses might be possible independent of switching excitation wavelengths. Yet, because of its pronounced pH sensitivity, adaptation to repeated oxidation, and insensitivity to reducing stimuli, HyPer responses have to be interpreted carefully. For reliable data, side-by-side pH monitoring with SypHer is essential.  相似文献   

3.
The functional connection between redox component Y z identified as Tyr-161 of polypeptide D-1 (Debus et al. 1988) and P680+ was analyzed by measurements of laser flash induced absorption changes at 830 nm in PS II membrane fragments from spinach. It was found that neither DCMU nor the ADRY agent 2-(3-chloro-4-trifluoromethyl) anilino-3,5-dinitrothiophene (ANT 2p) affects the rate of P680+ reduction by Y z under conditions where the catalytic site of water oxidation stays in the redox state S1. In contrast to that, a drastic retardation is observed after mild trypsin treatment at pH=6.0. This effect which is stimualted by flash illumination can be largely reversed by Ca2+. The above mentioned data lead to the following conclusions: (a) the segment of polypeptide D-1 containing Tyr-161 and coordination sites of P680 is not allosterically affected by structural changes due to DCMU binding at the QB-site which is also located in D-1. (b) ANT 2p as a strong protonophoric uncoupler and ADRY agent does not modify the reaction coordinate of P680+ reduction by Y z , and (c) Ca2+ could play a functional role for the electronic and vibrational coupling between the redox groups Y z and P680. The electron transport from Y z to P680+ is discussed within the framework of a nonadiabatic process. Based on thermodynamic considerations the reorganization energy is estimated to be in the order of 0.5 V.Abbreviations ADRY acceleration of the deactivation reactions of the water splitting enzyme system Y - ANT 2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5 dinitrothiophene - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - MES 2[N-Morpholino]ethanesulfonic acid - PS II photosystem II - QA, QB primary and secondary plastoquinone acceptor of photosystem II - S i redox states of the catalytic site of water oxidation - Y z redox active Tyr-161 of polypeptide D-1  相似文献   

4.

Background

The ratio of NAD+/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD+/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD+/NADH are fundamentally new approach for studying the NAD+/NADH dynamics.

Methods

We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy.

Results

The sensor, named RexYFP, reports changes in the NAD+/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD+/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD+/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore.

Conclusion

RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments.

General significance

RexYFP has several advantages over existing NAD+/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.  相似文献   

5.
High cholesterol, especially LDL cholesterol, has been associated with the development of atherosclerotic plaques in arteries. To investigate the changes in cellular substrate metabolism early in the atherogenic process, Sinclair miniature swine were treated for 12 weeks with either a control diet, a high fat diet, or a high fat diet with the addition of alloxan to induce diabetes. The fractional entry into the TCA cycle of 1,2-13C-acetate (5 mM), 1-13C-glucose (5 mM), and unlabeled, endogenous lipids was determined in control, hyperlipidemic, and diabetic/ hyperlipidemic pigs using 13C-isotopomer analysis of glutamate. The diabetic state of the pigs was validated by plasma glucose measurements made after 10 weeks of alloxan treatment for control (65 ± 6 mg/dL), hyperlipidemic (63 ± 5 mg/dL), and diabetic/hyperlipidemic (333 ± 52 mg/dL) pigs. Plasma glucose values did not correlate with the percentage of glucose entry into the TCA cycle (R2 = 0.0819, n = 10). Alterations in the pattern of substrate oxidation were better correlated with changes in plasma lipids (cholesterol and triglycerides) than with changes in plasma glucose. Plasma total cholesterol and total triglyceride levels significantly correlated with changes in acetate metabolism (R2 = 0.7768 and R2 = 0.4787, respectively) and with changes in glucose metabolism (R2 = 0.6067 and R2 = 0.4506, respectively). We conclude that alterations in lipid profile, especially those that were observed in the diabetic milieu, are associated with early changes in vascular smooth muscle oxidative metabolism. These changes in oxidative metabolism may precede alterations in smooth muscle phenotype and, therefore, may play an important role in the early pathogenesis of atherosclerosis.  相似文献   

6.
Na+,K+-ATPase (NKA) is required to generate the resting membrane potential in neurons. Nociceptive afferent neurons express not only the α and β subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons is necessary for maintaining the mechanical allodynia induced by peripheral inflammation. FXYD2 interacted with α1NKA and negatively regulated the NKA activity, depolarizing the membrane potential of nociceptive neurons. Mechanical allodynia initiated in FXYD2-deficient mice was abolished 4 days after inflammation, whereas it persisted for at least 3 weeks in wild-type mice. Importantly, the FXYD2/α1NKA interaction gradually increased after inflammation and peaked on day 4 post inflammation, resulting in reduction of NKA activity, depolarization of neuron membrane and facilitation of excitatory afferent neurotransmission. Thus, the increased FXYD2 activity may be a fundamental mechanism underlying the persistent hypersensitivity to pain induced by inflammation.  相似文献   

7.
Neurotransmitter l-glutamate released at central synapses is taken up and “recycled” by astrocytes using glutamate transporter molecules such as GLAST and GLT. Glutamate transport is essential for prevention of glutamate neurotoxicity, it is a key regulator of neurotransmitter metabolism and may contribute to mechanisms through which neurons and glia communicate with each other. Using immunocytochemistry and image analysis we have found that extracellular d-aspartate (a typical substrate for glutamate transport) can cause redistribution of GLAST from cytoplasm to the cell membrane. The process appears to involve phosphorylation/dephosphorylation and requires intact cytoskeleton. Glutamate transport ligands l -trans-pyrrolidine-2,4-dicarboxylate and dl-threo-3-benzyloxyaspartate but not anti,endo-3,4-methanopyrrolidine dicarboxylate have produced similar redistribution of GLAST. Several representative ligands for glutamate receptors whether of ionotropic or metabotropic type, were found to have no effect. In addition, extracellular ATP induced formation of GLAST clusters in the cell membranes by a process apparently mediated by P2 receptors. The present data suggest that GLAST can rapidly and specifically respond to changes in the cellular environment thus potentially helping to fine-tune the functions of astrocytes. The authors J.-W. Shin and K. T. D. Nguyen have contributed equally.  相似文献   

8.
These experiments examined effects of several ligands on the K+ p-nitrophenylphosphatase activity of the (Na+,K+)-ATPase in membranes of a rat brain cortex synaptosomal preparation. K+-independent hydrolysis of this substrate by the synaptosomal preparation was studied in parallel; the rate of hydrolysis in the absence of K+ was approximately 75% less than that observed when K+ was included in the incubation medium. The response to the H+ concentrations was different: K+-independent activity showed a pH optimum around 6.5–7.0, while the K+-dependent activity was relatively low at this pH range. Ouabain (0.1 mM) inhibited K+-dependent activity 50%; a concentration 10 times higher did not produce any appreciable effect on the K+-independent activity. Na+ did not affect K+-independent activity at all, while the same ligand concentration inhibited sharply the K+-dependent activity; this inhibition was not competitive with the substrate,p-nitrophenyl phosphate. K+-dependent activity was stimulated by Mg2+ with low affinity (millimolar range), and 3 mM Mg2+ produced a slight stimulation of the activity in absence of K+, which could be interpreted as Mg2+ occupying the K+ sites. Ca2+ had no appreciable effect on the activity in the absence of K+. However, in the presence of K+ a sharp inhibition was found with all Ca2+ concentrations studied. ATP (0.5 mM) did not affect the K+-independent activity, but this nucleotide behaved as a competitive inhibitor top-nitrophenylphosphate. Pi inhibited activity in the presence of K+, competively to the substrate, so it could be considered as the second product of the reaction sequence.Abbreviations used p-NPP p-nitrophenylphosphate - p-NPPase rho-nitrophenylphosphatase activity  相似文献   

9.
To gain insite into the mechanisms of myocardial regulation as it relates to the interaction of mechanical and metabolic function and perfusion, intact animal models were instrumented for routine physiological measurements of mechanical function and for measurements of metabolism (31P NMR, NADH fluorescence (redox state)) and perfusion (2H NMR and Laser doppler techniques). These techniques were applied to canine and cat models of volume and/or pressure loading, hypoxia, ischemia and cardiomyopathic states. Data generated using these techniques indicate that myocardial bioenergetic function is quite stable under most loading conditions as long as the heart is not ischemic. In addition, these data indicate that there is no universal regulator and that different biochemical regulators appear to mediate stable function under different physiological and pathophysiological conditions: for example; during hypoxia, NADH redox state appears to play a regulatory role; and in pressure loading, ADP, phosphorylation potential and free energy of ATP hydrolysis as well as NADH redox state appear to be regulatory.  相似文献   

10.
1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP+ exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP+ exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP+ concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP+ depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP+-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP+-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP+-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP+ on neuronal DA homeostasis and neurotoxicity.  相似文献   

11.
The kinetics of K+ efflux across the membranes of i) wild-type Escherichia coli poisoned by the thiol reagent N-ethylmaleimide, ii) K+ retention mutants and iii) glutathione-deficient mutants, have revealed a common K+ leaky phenotype; it is characterized by a very high rate of K+ efflux. The results suggest that the products of kefB and kefC genes could encode two K+ channels, both gated by glutathione. The possible function of these K+ channels seems to be a K+ exit controlled by the redox state of the cell; indeed, it can be inferred from the effects of several oxidants and reductants that turning on and off of the K+ efflux mediated by the channels can be correlated with the redox state of glutathione.  相似文献   

12.
[U-13C]Glutamate metabolism was studied in primary brain cell cultures. Cell extracts as well as redissolved lyophilized media were subjected to nuclear magnetic resonance spectroscopy in order to identify13C labeled metabolites. Both neurons and astrocytes metabolized glutamate extensively with13C label appearing in aspartate in all cultures. Additionally, GABA is synthesized in the GABAergic cortical neurons. Labeling of lactate and glutamine was prominent in medium from astrocytes, but not detectable in cerebral cortical neurons. Cerebellar granule neurons showed some labeling of lactate. Glutamate derived from the first turn of the tricarboxylic acid cycle (1,2,3-13C3-isotopomer) is present in all cell types analyzed. However, glutamate derived from the second turn of the cycle was only detected in granule neurons. In astrocytes, the transaminase inhibitor aminooxyacetic acid not only abolished the appearance of aspartate, but also of the 1,2,3-13C3-isotopomer of glutamate, thus showing that transmination is necessary for the conversion of 2-oxoglutarate to glutamate. The entry of glutamate into the tricarboxylic acid cycle was, however, not seriously impaired. 3-nitropropionic acid abolished the appearance of aspartate, the 1,2,3-13C3-isotopomer of glutamate and lactate in cerebellar granule neurons. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

13.
The naturally occurring toxin rottlerin has been used by other laboratories as a specific inhibitor of protein kinase C-delta (PKC-δ) to obtain evidence that the activity-dependent distribution of glutamate transporter GLAST is regulated by PKC-δ mediated phosphorylation. Using immunofluorescence labelling for GLAST and deconvolution microscopy we have observed that d-aspartate-induced redistribution of GLAST towards the plasma membranes of cultured astrocytes was abolished by rottlerin. In brain tissue in vitro, rottlerin reduced apparent activity of (Na+, K+)-dependent ATPase (Na+, K+-ATPase) and increased oxygen consumption in accordance with its known activity as an uncoupler of oxidative phosphorylation (“metabolic poison”). Rottlerin also inhibited Na+, K+-ATPase in cultured astrocytes. As the glutamate transport critically depends on energy metabolism and on the activity of Na+, K+-ATPase in particular, we suggest that the metabolic toxicity of rottlerin and/or the decreased activity of the Na+, K+-ATPase could explain both the glutamate transport inhibition and altered GLAST distribution caused by rottlerin even without any involvement of PKC-δ-catalysed phosphorylation in the process.  相似文献   

14.
The effect of a model of depression using female rats on Na+, K+-ATPase activity in hippocampal synaptic plasma membranes was studied. In addition, the effect of further chronic treatment with fluoxetine on this enzyme activity was verified. Sweet food consumption was measured to evaluate the efficacy of this model in inducing a state of reduced response to rewarding stimili. After 40 days of mild stress, a reduction in sweet food ingestion was observed. Reduction of hippocampal Na+, K+-ATPase activity was also observed. Treatment with fluoxetine increased this enzyme activity and reversed the effect of stress. Chronic fluoxetine decreased the ingestion of sweet food in both groups. This result is in agreement with suggestions that reduction of Na+, K+-ATPase activity is a caracteristic of depressive disorders. Fluoxetine reversed this effect. Therefore it is possible that altered Na+, K+-ATPase activity may be involved in the pathophysiology of depression in patients.  相似文献   

15.
This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl and Na+-K+-2Cl cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activity.  相似文献   

16.
Using the ROS (reactive oxygen species)-sensitive fluorescent dyes dichlorodihydrofluorescein and dihydroethidine, previous studies yielded opposite results about the glucose regulation of oxidative stress in insulin-secreting pancreatic β-cells. In the present paper, we used the ratiometric fluorescent proteins HyPer and roGFP1 (redox-sensitive green fluorescent protein 1) targeted to mitochondria [mt-HyPer (mitochondrial HyPer)/mt-roGFP1 (mitochondrial roGFP1)] to monitor glucose-induced changes in mitochondrial hydrogen peroxide concentration and glutathione redox state in adenovirus-infected rat islet cell clusters. Because of the reported pH sensitivity of HyPer, the results were compared with those obtained with the mitochondrial pH sensors mt-AlpHi and mt-SypHer. The fluorescence ratio of the mitochondrial probes slowly decreased (mt-HyPer) or increased (mt-roGFP1) in the presence of 10 mmol/l glucose. Besides its expected sensitivity to H2O2, mt-HyPer was also highly pH sensitive. In agreement, changes in mitochondrial metabolism similarly affected mt-HyPer, mt-AlpHi and mt-SypHer fluorescence signals. In contrast, the mt-roGFP1 fluorescence ratio was only slightly affected by pH and reversibly increased when glucose was lowered from 10 to 2 mmol/l. This increase was abrogated by the catalytic antioxidant Mn(III) tetrakis (4-benzoic acid) porphyrin but not by N-acetyl-L-cysteine. In conclusion, due to its pH sensitivity, mt-HyPer is not a reliable indicator of mitochondrial H2O2 in β-cells. In contrast, the mt-roGFP1 fluorescence ratio monitors changes in β-cell mitochondrial glutathione redox state with little interference from pH changes. Our results also show that glucose acutely decreases rather than increases mitochondrial thiol oxidation in rat β-cells.  相似文献   

17.

Background

Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells.

Principal Findings

Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events.

Conclusions

We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells.  相似文献   

18.
Summary Excised roots from aeroponic axenically 48 h dark-grown sunflower (Helianthus annuus L.) seedlings showed redox activities, being able to oxidize/reduce all the exogenously added electron donors/acceptors, that affected the H+/K+ net fluxes simultaneously measured in the medium. Trials were performed with in vivo and CN-poisoned roots; these showed null+/K+ net flux activity but still oxidized/reduced all the e donors/acceptors tested except NADH. NADH enhanced the rate of H+ efflux by in vivo roots, otherwise not changing any of the normal flux kinetic characteristics, suggesting that NADH donates e and H+ to the exocellular NADH oxidoreductase activity of a CN-sensitive redox chain in the plasmalemma of the root cells. K+ influx was not affected, probably because the NADH concentration was not very high. The e donor HFC(hexacyanoferrate)(II) activated the H+ efflux in a very different way: maximum H+ efflux rate was maintained, but both the maximum rate plateau and the optimal pH range were extended, and hence the total H+ efflux was significantly enhanced. At the same time, the K+ influx was doubled. The different H+-efflux kinetics, together with the small but significant HCF(II) oxidation by CN-poisoned roots, were taken as evidence that, besides the CN-sensitive redox chain, an alternative CN-resistant redox chain in the plasmalemma was involved in HCF(II) oxidation. The effect of the oxidized form HCF(III) on H+ and K+ fluxes was the opposite to that described for HCF(II), but the other H+ efflux kinetic characteristics were similar (the maximum rate plateau was extended so that total H+ efflux equaled that of the controls). It is proposed that HCF(III) accepts e only from the alternative CN-resistant redox chain. We could not measure the effect of HCI(hexachloroiridate)(IV) on H+ efflux, as the pH electrodes alone quickly reduced the compound. HCI(IV) promoted a rapid transitory K+ efflux, followed by recovery of K+ influx. The HCI(IV) reduction by in vivo or CN-poisoned roots was extremely rapid, following similar kinetics. Thus, only the CN-resistant redox chain was involved in both cases. The redox chain inhibitor cis-platinum(II) annulled ion fluxes in the presence of both NADH and HCF(III), and later even inverted them (a small H+ influx down the gradient would induce K+ efflux). Cis-platinum(II) did not affect HCF(III) reduction by in vivo roots, and only slightly depressed that by CN-poisoned roots. Overall, the effects of the exogenously added e donors/acceptors tested were consistent with the existence of a CN-resistant redox chain in the plasmalemma of the root cells which would donate/accept e even when the H+ and K+ fluxes were annulled by CN or even inverted by cis-platinum(II) treatments. Thus, in the plasmalemma of in vivo roots this chain would compete for electrons with the normal CN-sensitive one, as in plant mitochondria. The effects on the K+ flux were consistent with the current hypothesis that this contributes to counteracting the changes in membrane potential caused by redox activities and the H+ flux induced by the different redox compounds tested.Abbreviations cis-Pt(II) cis-platinum(II) diammine dichloride - HCF(II) hexacyanoferrate(II) (or ferrocyanide) potassium salt - HCF(III) hexacyanoferrate(III) (or ferricyanide) potassium salt - HCI(IV) hexachloroiridate(IV) - PMOR plasmalemma oxidoreductase complex  相似文献   

19.
Exposure to Cd2+ and Pb2+ has neurotoxic consequences for human health and may cause neurodegeneration. The study focused on the analysis of the presynaptic mechanisms underlying the neurotoxic effects of non-essential heavy metals Cd2+ and Pb2+. It was shown that the preincubation of rat brain nerve terminals with Cd2+ (200 μM) or Pb2+ (200 μM) resulted in the attenuation of synaptic vesicles acidification, which was assessed by the steady state level of the fluorescence of pH-sensitive dye acridine orange. A decrease in l-[14C]glutamate accumulation in digitonin-permeabilized synaptosomes after the addition of the metals, which reflected lowered l-[14C]glutamate accumulation by synaptic vesicles inside of synaptosomes, may be considered in the support of the above data. Using isolated rat brain synaptic vesicles, it was found that 50 μM Cd2+ or Pb2+ caused dissipation of their proton gradient, whereas the application of essential heavy metal Mn2+ did not do it within the range of the concentration of 50-500 μM. Thus, synaptic malfunction associated with the influence of Cd2+ and Pb2+ may result from partial dissipation of the synaptic vesicle proton gradient that leads to: (1) a decrease in stimulated exocytosis, which is associated not only with the blockage of voltage-gated Ca2+ channels, but also with incomplete filling of synaptic vesicles; (2) an attenuation of Na+-dependent glutamate uptake.  相似文献   

20.
The activity of NADP+-specific isocitrate dehydrogenase (NADP+-IDH, EC 1.1.1.42) was investigated during the ripening of tomato (Lycopersicon esculentum Mill.) fruit. In the breaker stage, NADP+-IDH activity declined but a substantial recovery was observed in the late ripening stages when most lycopene synthesis occurs. These changes resulted in higher NADP+-IDH activity and specific polypeptide abundance in ripe than in green fruit pericarp. Most of the enzyme corresponded to the predominant cytosolic isoform which was purified from both green and ripe fruits. Fruit NADP+-IDH seems to be a dimeric enzyme having a subunit size of 48 kDa. The K m values of the enzymes from green and ripe pericarp for NADP+, isocitrate and Mg2+ were not significantly different. The similar molecular and kinetic properties and chromatographic behaviour of the enzymes from the two kinds of tissue strongly suggest that the ripening process is not accompanied by a change in isoenzyme complement. The increase in NADP+-IDH in the late stage of ripening also suggests that this enzyme is involved in the metabolism of C6 organic acids and in glutamate accumulation in ripe tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号