首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanisms of resistance to thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) were investigated in human leukemia cell lines. We developed two 6-MP- and 6-TG-resistant cell lines from the human T-lymphoblastic cell line (MOLT-4) by prolonged exposure to these drugs. The resistant cells were highly cross resistant to 6-MP and 6-TG, and exhibited marked reduction in cellular uptake of 6-MP (70% and 80%, respectively). No significant modification of the activities of hypoxanthine-guanine phosphoribosyl transferase, thiopurine methyltransferase or inosine monophosphate dehydrogenase was observed. Real-time PCR of concentrative nucleoside transporter 3 (CNT3) and equilibrative nucleoside transporter 2 (ENT2) of resistant cells showed substantial reductions in expression of messenger RNAs. Small interfering RNA designed to silence the CNT3 and ENT2 genes down-regulated the expression of these genes in leukemia cells. These decreases were accompanied by reduction of transport of 6-MP (47% and 21%, respectively) as well as its cytocidal effect (30% and 21%, respectively). Taken together these results show that CNT3 and ENT2 play a key role in the transport of 6-MP and 6-TG by leukemia cells. From a clinical point of view determination of CNT3 and ENT2 levels in leukemia cells may be useful in predicting the efficacy of thiopurine treatment.  相似文献   

2.
In order to better understand the mechanisms of resistance to thiopurines, we studied two sublines of the MOLT4 T-lymphoblastic leukemia cell line, resistant to 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). We found that the underlying mechanism of resistance in both resistant cell lines was a markedly reduction in initial transport of 6-MP (3- and 5-fold, respectively, in 6-MP- and 6-TG-resistant cells). No significant alteration of activities of hypoxanthine-guanine phosphoribosyl transferase, thiopurine methyltransferase or inosine monophosphate dehydrogenase, the key enzymes involved in the metabolism of thiopurines was detected. We conclude that defected initial transport of thiopurines by cells may very well explain their resistance to these drugs.  相似文献   

3.
The determination of the thiopurine S-methyltransferase activity (TPMT; EC 2.1.1.67) has become an important issue during thiopurine therapy due to its known genetic polymorphism resulting in a wide range of TPMT activity. Therefore, the standard thiopurine drug regimen is associated with increased hematopoetic toxicity in patients with low or absent TPMT activity, whereas patients with high activity may be insufficiently treated. However, presently available methods are labour intensive and time consuming and tend towards too high or too low enzyme activity due to their methodological approach. The use of instable substrate solutions (6-MP or 6-TG), organic solvents like dimethyl sulfoxide and too high substrate and co-substrate saturation concentrations contribute to this phenomenon. We therefore, established an optimized and fast isocratic HPLC linked TPMT assay based on the enzymatic methylation of mercaptopurine or thioguanine in RBC lysates with S-adenosyl-l-methionine as methyl donor. Unspecific non-enzymatic methylation was not detectable. The recovery of 6-methyl-mercaptopurine was 97-102%, the intra- and interday variation between 1.0 and 5.0%, respectively. The assay dispenses with a time consuming extraction procedure with organic solvents, a heating step, and a gradient elution and is therefore, favourable for clinical routine application. The TPMT activity was measured in 62 untreated children with acute lymphoblastic leucemia at the time of diagnosis (activity = 34.0+/-10.6 nmol/g Hb/h, range: 11.5-55.4 nmol/g Hb/h) and in 12 adult healthy volunteers (62.8+/-7.7 nmol/g Hb/h, range: 48-82 nmol/g Hb/h) reflecting the wide measurable TPMT activity found in erythrocytes.  相似文献   

4.
Song JH  Choi CH  Yeom HJ  Hwang SY  Kim TS 《Life sciences》2006,79(2):193-202
Acquired drug-resistance phenotype is a key factor in the relapse of patients suffering hematological malignancies. In order to investigate the genes involved in drug resistance, a human leukemia cell line that is resistant to doxorubicin, an anthracycline anticancer agent (AML-2/DX100), was selected and its gene expression profile was analyzed using a cDNA microarray. A number of genes were differentially expressed in the AML-2/DX100 cells, compared with the wild type (AML-2/WT). Pro-apoptotic genes such as TNFSF7 and p21 (Cip1/Waf1) were significantly down-regulated, whereas the IKBKB, PCNA, stathmin 1, MCM5, MMP-2 and MRP1 genes, which are involved in anti-apoptotic or cell cycle progression, were over-expressed. The AML-2/DX100 cells were also resistant to other anticancer drugs, including daunorubicin and camptothecin, and the expression levels of the differentially regulated genes such as STMN1, MMP-2 and CTSG, were constantly maintained. This suggests that the deregulated genes obtained from the DNA microarray analysis in a cell line model of drug resistance might contribute to the acquired drug resistance after chronic exposure.  相似文献   

5.
6.
6-Mercaptopurine and 6-thioguanine strongly inhibited the zero-trans entry of hypoxanthine into Novikoff rat hepatoma cells which lacked hypoxanthine/guanine phosphoribosyltransferase, whereas 8-azaguanine had no significant effect. 6-Mercaptopurine was transported by the hypoxanthine carrier with about the same efficiency as its natural substrates (Michaelis-Menten constant = 372 ± 23 μM; maximum velocity = 30 ± 0.7 pmol/μl cell H2O per s). 8-Azaguanine entry into the cells, on the other hand, showed no sign of saturability and was not significantly affected by substrates of the hypoxanthine/guanine carrier. The rate of entry of 8-azaguanine at 10–100 μM amounted to only about 5% of that of hypoxanthine transport and was related to its lipid solubility in the same manner as observed for various substances whose permeation through the plasma membrane is believed to be non-mediated. Only the non-ionized form of 8-azaguanine (pKa = 6.6) permeated the cell membrane.Studies with wild type Novikoff cells showed that permeation into the cell was the main rate-determining step in the conversion of extracellular 8-azaguanine to intracellular aza-GTP and its incorporation into nucleic acids. In contrast, 6-mercaptopurine was rapidly transported into cells and phosphoribosylated; the main rate-determining step in its incorporation into nucleic acids was the further conversion of 6-mercaptopurine riboside 5'-monophosphate.  相似文献   

7.
A non-extraction high-performance liquid chromatographic (HPLC) method has been developed for the determination of 6-methylthioguanine (6-MTG), as part of the determination of thiopurine S-methyltransferase activity (TPMT) in erythrocytes. Erythrocyte lysate is added to a glass vial containing substrates and incubation buffer, which is then sealed for the rest of the analysis. Enzyme incubation, sample preparation, and analysis are then undertaken without further sample-handling steps. The need for a solvent extraction step has been overcome by heating the incubate to 85 degrees C to stop the enzyme reaction. The heat inactivation step precipitates protein which upon centrifugation forms a thin film in the bottom of the glass vial enabling the supernatant to be injected directly onto the HPLC system. The assay shows excellent precision and recovery with a within-batch imprecision giving a co-efficient of variation of 2.9% (mean=41.5 nmol 6-MTG/gHb/h, n=10) and 5.1% (mean=12.6 nmol 6-MTG/g Hb/h, n=10). The between-batch imprecision gives a co-efficient of variation of 8.2% (mean=11.1 nmol 6-MTG/gHb/h, n=11) and 7.3% (mean=41.0 nmol 6-MTG/gHb/h, n=16). Determination of the TPMT activity in 120 people shows a range of enzyme activity of 11.3-63.8 nmol 6-MTG/gHb/h with a mean and median activity of 34.8 and 34.2 nmol 6-MTG/gHb/h, respectively. TPMT is increasingly used in clinical practice to ensure optimisation of treatment with thioguanine drugs. This direct HPLC method minimises sample-handling, reduces inherent imprecision, the possibility of laboratory error and with the potential for further automation, makes it ideal for use in a regional referral laboratory.  相似文献   

8.
Tumor suppressor PML is induced under viral and genotoxic stresses by interferons and JAK-STAT signaling. However, the mechanism responsible for its cell type-specific regulation under non-stimulated conditions is poorly understood. To analyze the variation of PML expression, we utilized three human cell types, BJ fibroblasts and HeLa and U2OS cell lines, each with a distinct PML expression pattern. Analysis of JAK-STAT signaling in the three cell lines revealed differences in levels of activated STAT3 but not STAT1 correlating with PML mRNA and protein levels. RNAi-mediated knockdown of STAT3 decreased PML expression; both STAT3 level/activity and PML expression relied on IL6 secreted into culture media. We mapped the IL6-responsive sequence to an ISRE(-595/-628) element of the PML promoter. The PI3K/Akt/NFκB branch of IL6 signaling showed also cell-type dependence, being highest in BJ, intermediate in HeLa, and lowest in U2OS cells and correlated with IL6 secretion. RNAi-mediated knockdown of NEMO (NF-κ-B essential modulator), a key component of NFκB activation, suppressed NFκB targets LMP2 and IRF1 together with STAT3 and PML. Combined knockdown of STAT3 and NEMO did not further promote PML suppression, and it can be bypassed by exogenous IL6, indicating the NF-κB pathway acts upstream of JAK-STAT3 through induction of IL6. Our results indicate that the cell type-specific activity of IL6 signaling pathways governs PML expression under unperturbed growth conditions. As IL6 is induced in response to various viral and genotoxic stresses, this cytokine may regulate autocrine/paracrine induction of PML under these pathophysiological states as part of tissue adaptation to local stress.  相似文献   

9.
A specific, sensitive, single-step solid-phase extraction and reversed-phase high-performance liquid chromatographic method for the simultaneous determination of plasma 6-mercaptopurine and azathioprine concentrations is reported. Following solid-phase extraction, analytes are separated on a C18 column with mobile phase consisting of 0.8% acetonitrile in 1 mM triethylamine, pH 3.2, run on a gradient system. Quantitation limits were 5 ng/ml and 2 ng/ml for azathioprine and 6-mercaptopurine, respectively. Peak heights correlated linearly to known extracted standards for 6-mercaptopurine and azathioprine (r = 0.999) over a range of 2–200 ng/ml. No chromatographic interferences were detected.  相似文献   

10.
11.
Comparative genomic hybridization (CGH) using microarrays is performed on bacteria in order to test for genomic diversity within various bacterial species. The microarrays used for CGH are based on the genome of a fully sequenced bacterium strain, denoted reference strain. Labelled DNA fragments from a sample strain of interest and from the reference strain are hybridized to the array. Based on the obtained ratio intensities and the total intensities of the signals, each gene is classified as either present (one copy or multiple copies) or divergent (zero copies). In this paper mixture models with different number of components are tted on different combinations of variables and compared with each other. The study shows that mixture models fitted on both the ratio intensities and the total intensities including the replicates for each gene improve, compared to previously published methods, the results for several of the data sets tested. Some summaries of the data sets are proposed as a guide for the choice of model and the choice of number of components. The models are applied on data from CGH experiments with the bacteria Staphylococcus aureus and  相似文献   

12.
13.
14.
15.
We have previously reported that (i) progression of malignancy in patients bearing astrocytic tumors correlates with increased tumor levels of galectin-1; (ii) in vitro addition of purified galectin-1 to U87 human glioblastoma cells enhances tumor cell motility; and (iii) conversely, knocking down galectin-1 expression in this cell line by stable transfection with antisense galectin-1 mRNA impairs motility and delays mortality after their intracranial grafting to nude mice. We here used cDNA microarray analysis to compare the effect on gene expression of stable transfection with antisense galectin-1 vector to mock-transfected and wild-type cells. Among the 631 spots probing genes potentially involved in cancer that were valid for analysis on all the arrays the expression of 86 genes was increased at least 2-fold. Confirmation of increased protein levels was provided by immunocytochemistry for p21waf/cip1, cullin-2, p53, ADAM-15, and MAP-2. Major differences in the expression patterns of ADAM-15 and the actin stress fiber organization were also observed. U87 cells stably deficient for galectin-1 expression were significantly less motile than control. We conclude that the stable inhibition of galectin-1 expression alters the expression of a number of genes that either directly or indirectly influence adhesion, motility and invasion of human glioblastoma cells.  相似文献   

16.
17.
18.
19.
Microarray technology has become a standard tool for generation of gene expression profiles to explore human disease processes. Being able to start from minute amounts of RNA extends the fields of application to core needle biopsies, laser capture microdissected cells, and flow-sorted cells. Several RNA amplification methods have been developed, but no extensive comparability and concordance studies of gene expression profiles are available. Different amplification methods may produce differences in gene expression patterns. Therefore, we compared profiles processed by a standard microarray protocol with three different types of RNA amplification: (i) two rounds of linear target amplification, (ii) random amplification, and (iii) amplification based on a template switching mechanism. The latter two methods accomplish target amplification in a nonlinear way using PCR technology. Starting from as little as 50 ng of total RNA, the yield of labeled cRNA was sufficient for hybridization to Affymetrix HG-U133A GeneChip array using the respective methods. Replicate experiments were highly reproducible for each method. In comparison with the standard protocol, all three approaches are less sensitive and introduced a minor but clearly detectable bias of the detection call. In conclusion, the three amplification protocols used are applicable for GeneChip analysis of small tissue samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号