首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subtilase cytotoxin (SubAB) is a AB5 type toxin produced by Shiga-toxigenic Escherichia coli , which exhibits cytotoxicity to Vero cells. SubAB B subunit binds to toxin receptors on the cell surface, whereas the A subunit is a subtilase-like serine protease that specifically cleaves chaperone BiP/Grp78. As noted previously, SubAB caused inhibition of protein synthesis. We now show that the inhibition of protein synthesis was transient and occurred as a result of ER stress induced by cleavage of BiP; it was closely associated with phosphorylation of double-stranded RNA-activated protein kinase-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α). The phosphorylation of PERK and eIF2α was maximal at 30–60 min and then returned to the control level. Protein synthesis after treatment of cells with SubAB was suppressed for 2 h and recovered, followed by induction of stress-inducible C/EBP-homologous protein (CHOP). BiP degradation continued, however, even after protein synthesis recovered. SubAB-treated cells showed cell cycle arrest in G1 phase, which may result from cyclin D1 downregulation caused by both SubAB-induced translational inhibition and continuous prolonged proteasomal degradation.  相似文献   

2.
R Hu  P Zhou  YB Peng  X Xu  J Ma  Q Liu  L Zhang  XD Wen  LW Qi  N Gao  P Li 《PloS one》2012,7(6):e39664
6-Shogaol is an active compound isolated from Ginger (Zingiber officinale Rosc). In this work, we demonstrated that 6-shogaol induces apoptosis in human hepatocellular carcinoma cells in relation to caspase activation and endoplasmic reticulum (ER) stress signaling. Proteomic analysis revealed that ER stress was accompanied by 6-shogaol-induced apoptosis in hepatocellular carcinoma cells. 6-shogaol affected the ER stress signaling by regulating unfolded protein response (UPR) sensor PERK and its downstream target eIF2α. However, the effect on the other two UPR sensors IRE1 and ATF6 was not obvious. In prolonged ER stress, 6-shogaol inhibited the phosphorylation of eIF2α and triggered apoptosis in SMMC-7721 cells. Salubrinal, an activator of the PERK/eIF2α pathway, strikingly enhanced the phosphorylation of eIF2α in SMMC-7721 cells with no toxicity. However, combined treatment with 6-shogaol and salubrinal resulted in significantly increase of apoptosis and dephosphorylation of eIF2α. Overexpression of eIF2α prevented 6-shogaol-mediated apoptosis in SMMC-7721 cells, whereas inhibition of eIF2α by small interfering RNA markedly enhanced 6-shogaol-mediated cell death. Furthermore, 6-shogaol-mediated inhibition of tumor growth of mouse SMMC-7721 xenograft was associated with induction of apoptosis, activation of caspase-3, and inactivation of eIF2α. Altogether our results indicate that the PERK/eIF2α pathway plays an important role in 6-shogaol-mediated ER stress and apoptosis in SMMC-7721 cells in vitro and in vivo.  相似文献   

3.
4.
HeLa cells stably expressing the α chain of T-cell receptor (αTCR), a model substrate of ER-associated degradation (ERAD), were used to analyze the effects of BiP/Grp78 depletion by the SubAB cytotoxin. SubAB induced XBP1 splicing, followed by JNK phosphorylation, eIF2α phosphorylation, upregulation of ATF3/4 and partial ATF6 cleavage. Other markers of ER stress, including elements of ERAD pathway, as well as markers of cytoplasmic stress, were not induced. SubAB treatment decreased absolute levels of αTCR, which was caused by inhibition of protein synthesis. At the same time, the half-life of αTCR was extended almost fourfold from 70 min to 210 min, suggesting that BiP normally facilitates ERAD. Depletion of p97/VCP partially rescued SubAB-induced depletion of αTCR, confirming the role of VCP in ERAD of αTCR. It therefore appears that ERAD of αTCR is driven by at least two different ATP-ase systems located at two sides of the ER membrane, BiP located on the lumenal side, while p97/VCP on the cytoplasmic side. While SubAB altered cell morphology by inducing cytoplasm vacuolization and accumulation of lipid droplets, caspase activation was partial and subsided after prolonged incubation. Expression of CHOP/GADD153 occurred only after prolonged incubation and was not associated with apoptosis.  相似文献   

5.
6.
The endoplasmic reticulum (ER)-resident protein kinase PERK is a major component of the unfolded protein response (UPR), which promotes the adaptation of cells to various forms of stress. PERK phosphorylates the α subunit of the translation initiation factor eIF2 at serine 51, a modification that plays a key role in the regulation of mRNA translation in stressed cells. Several studies have demonstrated that the PERK-eIF2α phosphorylation pathway maintains insulin biosynthesis and glucose homeostasis, facilitates tumor formation and decreases the efficacy of tumor treatment with chemotherapeutic drugs. Recently, a selective catalytic PERK inhibitor termed GSK2656157 has been developed with anti-tumor properties in mice. Herein, we provide evidence that inhibition of PERK activity by GSK2656157 does not always correlate with inhibition of eIF2α phosphorylation. Also, GSK2656157 does not always mimic the biological effects of the genetic inactivation of PERK. Furthermore, cells treated with GSK2656157 increase eIF2α phosphorylation as a means to compensate for the loss of PERK. Using human tumor cells impaired in eIF2α phosphorylation, we demonstrate that GSK2656157 induces ER stress-mediated death suggesting that the drug acts independent of the inhibition of eIF2α phosphorylation. We conclude that GSK2656157 might be a useful compound to dissect pathways that compensate for the loss of PERK and/or identify PERK pathways that are independent of eIF2α phosphorylation.  相似文献   

7.
Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)‐negative strains of Shiga‐toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase‐dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB‐induced SG formation is regulated by activation of double‐stranded RNA‐activated protein kinase (PKR)‐like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12‐myristate 13‐acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4Cl and chloroquine, suppressed SubAB‐induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death‐associated protein 1 (DAP1) knockdown increased basal phospho‐PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA‐treated cells. Our findings show that SubAB‐induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin‐induced SG formation.  相似文献   

8.
FAD mutations in presenilin-1 (PS1) cause attenuation of the induction of the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP under ER stress, due to disturbed function of IRE1, the sensor for accumulation of unfolded protein in the ER lumen. PERK, an ER-resident transmembrane protein kinase, is also a sensor for the unfolded protein response (UPR), causing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation. Here, we report that the FAD mutant PS1 disturbs the UPR by attenuating both the activation of PERK and the phosphorylation of eIF2alpha. Consistent with the results of a disturbed UPR, inhibition of protein synthesis under ER stress was impaired in cells expressing PS1 mutants. These results suggest that mutant PS1 impedes general translational attenuation regulated by PERK and eIF2alpha, resulting in an increased load of newly synthesized proteins into the ER and subsequently increasing vulnerability to ER stress.  相似文献   

9.
Translational control depends on phosphorylation of eIF2α by PKR-like ER kinase (PERK). To examine the role of PERK in cognitive function, we selectively disrupted PERK expression in the adult mouse forebrain. In the prefrontal cortex (PFC) of PERK-deficient mice, eIF2α phosphorylation and ATF4 expression were diminished and were associated with enhanced behavioral perseveration, decreased prepulse inhibition, reduced fear extinction, and impaired behavioral flexibility. Treatment with the glycine transporter inhibitor SSR504734 normalized eIF2α phosphorylation, ATF4 expression, and behavioral flexibility in PERK-deficient mice. Moreover, the expression levels of PERK and ATF4 were reduced in the frontal cortex of human patients with schizophrenia. Together, our findings reveal that PERK plays a critical role in information processing and cognitive function and that modulation of eIF2α phosphorylation and ATF4 expression may represent an effective strategy for treating behavioral inflexibility associated with several neurological disorders such as schizophrenia.  相似文献   

10.
The endoplasmic reticulum (ER)-resident protein kinase PERK attenuates protein synthesis in response to ER stress through the phosphorylation of translation initiation factor eIF2alpha at serine 51. ER stress induces PERK autophosphorylation at several serine/threonine residues, a process that is required for kinase activation and phosphorylation of eIF2alpha. Herein, we demonstrate that PERK also possesses tyrosine kinase activity. Specifically, we show that PERK is capable of autophosphorylating on tyrosine residues in vitro and in vivo. We further show that tyrosine 615, which is embedded in a highly conserved region of the kinase domain of PERK, is essential for autocatalytic activity. That is, mutation of Tyr-615 to phenylalanine compromises the autophosphorylation capacity of PERK and the phosphorylation of eIF2alpha in vitro and in vivo. The Y615F mutation also impairs the ability of PERK to induce translation of ATF4. Immunoblot analyses with a phosphospecific antibody confirm the phosphorylation of PERK at Tyr-615 both in vitro and in vivo. Thus, our data classify PERK as a dual specificity kinase whose regulation by tyrosine phosphorylation contributes to its optimal activation in response to ER stress.  相似文献   

11.
12.
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.  相似文献   

13.
Cellular loss induced by tumor necrosis factor alpha (TNF-α) contributes to the pathogenesis of intervertebral disc (IVD) degeneration. Cellular stress induced by TNF-α activates several processes to restore cell homeostasis. These processes include autophagy, endoplasmic reticulum stress, and related unfolded protein response (UPR). However, the effect and mechanism of UPR and autophagy regulated by TNF-α in IVD degeneration (IDD) remain unclear. The effect of autophagy on biological changes in nucleus pulposus cells (NPCs) also remains elusive. In this study, rat NPCs were cultured with TNF-α in the presence or absence of the UPR or autophagy pathway small-interfering RNAs. The associated genes and proteins were evaluated through immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses to monitor UPR and autophagy signaling and identify the regulatory mechanism of autophagy by the UPR pathway. Trypan blue exclusion assay, cell flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, qRT-PCR, and western blot analyses were performed to examine the apoptosis of NPCs. The results showed that the acute exposure of TNF-α induced the apoptosis of rat NPCs and activated the protein kinase RNA-like ER kinase/eukaryotic translation initiation factor 2α (PERK/eIF2α) pathway of UPR and initiated autophagy. Silencing the PERK/eIF2α pathway or inhibiting autophagy enhanced the apoptosis of NPCs. Interference of the PERK/eIF2α pathway suppressed the autophagy of rat NPCs under TNF-α stimulation. Taken together, the PERK/eIF2α pathway reinforces the survival of NPCs under TNF-α stimulation by activating autophagy. Therefore, PERK/eIF2α-dependent autophagy could be a novel biological therapeutic target for IDD.  相似文献   

14.
15.
16.
17.
Regulated phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) by the endoplasmic reticulum (ER) stress-activated protein kinase PERK modulates protein synthesis and couples the production of ER client proteins with the organelle's capacity to fold and process them. PERK activation by ER stress is known to involve transautophosphorylation, which decorates its unusually long kinase insert loop with multiple phosphoserine and phosphothreonine residues. We report that PERK activation and phosphorylation selectively enhance its affinity for the nonphosphorylated eIF2 complex. This switch correlates with a marked change to the protease sensitivity pattern, which is indicative of a major conformational change in the PERK kinase domain upon activation. Although it is dispensable for catalytic activity, PERK's kinase insert loop is required for substrate binding and for eIF2alpha phosphorylation in vivo. Our findings suggest a novel mechanism for eIF2 recruitment by activated PERK and for unidirectional substrate flow in the phosphorylation reaction.  相似文献   

18.
C5b-9-induced glomerular epithelial cell (GEC) injury in vivo (in passive Heymann nephritis) and in culture is associated with damage to the endoplasmic reticulum (ER) and increased expression of ER stress proteins. Induction of ER stress proteins is enhanced via cytosolic phospholipase A(2) (cPLA(2)) and limits complement-dependent cytotoxicity. The present study addresses another aspect of the ER unfolded protein response, i.e. activation of protein kinase R-like ER kinase (PERK or pancreatic ER kinase), which phosphorylates eukaryotic translation initiation factor 2-alpha (eIF2alpha), thereby generally suppressing translation and decreasing the protein load on a damaged ER. Phosphorylation of eIF2alpha was enhanced significantly in glomeruli of proteinuric rats with passive Heymann nephritis, compared with control. In cultured GECs, complement induced phosphorylation of eIF2alpha and reduced protein synthesis, and complement-stimulated phosphorylation of eIF2alpha was enhanced by overexpression of cPLA(2). Ischemia-reperfusion in vitro (deoxyglucose plus antimycin A followed by glucose re-exposure) also stimulated eIF2alpha phosphorylation and reduced protein synthesis. Complement and ischemia-reperfusion induced phosphorylation of PERK (which correlates with activation), and fibroblasts from PERK knock-out mice were more susceptible to complement- and ischemia-reperfusion-mediated cytotoxicity, as compared with wild type fibroblasts. The GEC protein, nephrin, plays a key role in maintaining glomerular permselectivity. In contrast to a general reduction in protein synthesis, translation regulated by the 5'-end of mouse nephrin mRNA during ER stress was paradoxically maintained, probably due to the presence of short open reading frames in this mRNA segment. Thus, phosphorylation of eIF2alpha and consequent general reduction in protein synthesis may be a novel mechanism for limiting complement- or ischemia-reperfusion-dependent GEC injury.  相似文献   

19.
The hepatitis C virus envelope protein, E2, is an endoplasmic reticulum (ER)-bound protein that contains a region of sequence homology with the double-stranded RNA-activated protein kinase PKR and its substrate, the eukaryotic translation initiation factor 2 (eIF2). We previously reported that E2 modulates global translation through inhibition of the interferon-induced antiviral protein PKR through its PKR-eIF2alpha phosphorylation site homology domain (PePHD). Here we show that the PKR-like ER-resident kinase (PERK) binds to and is also inhibited by E2. At low expression levels, E2 induced ER stress, but at high expression levels, and in vitro, E2 inhibited PERK kinase activity. Mammalian cells that stably express E2 were refractory to the translation-inhibitory effects of ER stress inducers, and E2 relieved general translation inhibition induced by PERK. The PePHD of E2 was required for the rescue of translation that was inhibited by activated PERK, similar to our previous findings with PKR. Here we report the inhibition of a second eIF2alpha kinase by E2, and these results are consistent with a pseudosubstrate mechanism of inhibition of eIF2alpha kinases. These findings may also explain how the virus promotes persistent infection by overcoming the cellular ER stress response.  相似文献   

20.
Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2alpha on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2alpha, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2alpha attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2alpha kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2alpha. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2alpha and reduced inhibition of protein synthesis in response to hypoxia. PERK(-/-) mouse embryo fibroblasts failed to phosphorylate eIF2alpha and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2alpha and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号