首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A characteristic feature of gas gangrene with Clostridium perfringens (C. perfringens) is the absence of neutrophils within the infected area and the massive accumulation of neutrophils at the vascular endothelium around the margins of the necrotic region. Intravenous injection of C. perfringens alpha-toxin into mice resulted in the accumulation of neutrophils at the vascular endothelium in lung and liver, and release of GRO/KC, a member of the CXC chemokine family with homology to human interleukin-8 (IL-8). Alpha-toxin triggered activation of signal transduction pathways causing mRNA expression and production of IL-8, which activates migration and binding of neutrophils, in A549 cells. K252a, a tyrosine kinase A (TrkA) inhibitor, and siRNA for TrkA inhibited the toxin-induced phosphorylation of TrkA and production of IL-8. In addition, K252a inhibited the toxin-induced phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). PD98059, an ERK1/2 inhibitor, depressed phosphorylation of ERK1/2 and nuclear translocation of nuclear factor kappa B (NF-κB) p65, but SB203580, a p38 MAPK inhibitor, did not. On the other hand, PD98059 and SB203580 suppressed the toxin-induced production of IL-8. Treatment of the cells with PD98059 resulted in inhibition of IL-8 mRNA expression induced by the toxin and that with SB203580 led to a decrease in the stabilization of IL-8 mRNA. These results suggest that alpha-toxin induces production of IL-8 through the activation of two separate pathways, the ERK1/2/NF-κB and p38 MAPK pathways.  相似文献   

2.
NGF may play a role in airway inflammation and hyperresponsiveness. We studied its possible involvement in airway remodelling and report here its proliferative effect and its receptor and signalling pathways in human airway smooth muscle cells in culture (HASMC). Proliferation of HASMC induced by NGF (0.1-10 pM) was assessed by the XTT and BrdU techniques with and without kinase inhibitors. Immunoprecipitation and Western blotting were used to study phosphorylation of TrkA and MAPK. NGF caused dose-dependent proliferation of HASMC and induced TrkA phosphorylation, both abolished by the tyrosine-kinase inhibitor K252a. PI3K and JNK inhibitors had no effect. PKC inhibitors partially inhibited NGF-induced proliferation and totally abolished p38 phosphorylation but did not affect ERK1/2 phosphorylation. The rafK inhibitor decreased NGF-induced proliferation, and totally abolished ERK1/2 phosphorylation, but did not affect p38 phosphorylation. This finding was confirmed by the decrease of NGF-induced proliferation after treatment with inhibitors of the p38 or of ERK1/2 pathways. In conclusion, NGF activation of the TrkA receptor involves two distinct signalling pathways: PKC selectively activates p38, and the ras/raf pathway selectively activates ERK1/2. Both are necessary to induce HASMC proliferation.  相似文献   

3.
Here we investigated a biological association of constitutively active Src with TrkA in SK-N-MC human neuroblastoma cells. Activation of TrkA and extracellular signal-regulated kinase (ERK) by nerve growth factor (NGF) was inhibited by pretreatment with PP2, an inhibitor of Src family kinases. Moreover, NGF-induced phosphorylation of TrkA and ERK was also attenuated by the transfection with a dominant-negative src construct. On the other hand, the transfection with a constitutively active src construct enhanced these phosphorylations. In addition, we showed that active Src phosphorylates TrkA directly in vitro, and that Src associates with TrkA through Grb2 after NGF stimulation. These results suggest that constitutively active Src that associates with TrkA through Grb2 after NGF stimulation participates in TrkA phosphorylation and in turn enhances the mitogen-activated protein kinase signaling in SK-N-MC cells.  相似文献   

4.
Mast cell chymase is known to induce eosinophil migration in vivo and in vitro. In the present study, we investigated possible involvement of mitogen-activated protein (MAP) kinases; extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38, in the chymase-induced eosinophil migration. Human chymase induced a rapid phosphorylation of ERK1/2 and p38 in human eosinophilic leukemia EoL-1 cells, while no phosphorylation was detected in JNK. The chymase-induced phosphorylation of ERK and p38 was inhibited by pertussis toxin. Similar results were obtained in the experiments using mouse chymase and eosinophils. U0126 (the inhibitor for MAP/ERK kinase) suppressed chymase-induced migration of EoL-1 cells and mouse eosinophils. However, SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) showed little effect on the migration. It is suggested therefore that chymase activates ERK and p38 probably through G-protein-coupled receptor, and that ERK but not p38 cascade may have a crucial role in chymase-induced migration of eosinophils.  相似文献   

5.
The activation of extracellular receptor kinase (ERK) is one of the checkpoints to assess the activation of the classical Ras/mitogen-activated protein kinase (MAPK) cascade. Therefore, we tested more than 100 selenium-containing compounds for their ability to activate the MAPK signal pathway. Among them, we found that three selenazoles, 5-chloroacetyl-2-piperidino-1,3-selenazole (CS1), 5-chloroacetyl-2-morpholino-1,3-selenazole (CS2), and 5-chloroacetyl-2-dimethylamino-1,3-selenazole (CS3), induced the phosphorylation of ERK. These compounds also enhanced the phosphorylation of Akt, a signal transducing protein kinase for cell survival; and this phosphorylation was followed by suppression of cell death, thus suggesting that they had anti-apoptotic effects. Moreover, CSs 1-3 induced neurite outgrowth and facilitated the expression of neurofilament-M of PC12 cells, demonstrating that they induced neuronal differentiation of these cells. On the other hand, the CS-induced phosphorylation of MAPK was enhanced by buthionine sulfoximine (BSO), an activator of protein tyrosine phosphatases (PTPs), but inhibited by N-acetyl-l-cysteine (NAC), an inhibitor of receptor tyrosine kinase. These results imply that activation of some receptor tyrosine kinase(s) is involved in the mechanism of action of CSs 1-3. The activation of MAPK by CSs 1-3 was suppressed by U0126, a MEK inhibitor, but not by K252a, an inhibitor of TrkA; AG1478, an antagonist of epidermal growth factor receptor (EGFR); or by pertussis toxin. These results demonstrate that the CS-induced phosphorylation of Akt and MAP kinase (receptor tyrosine kinase(s)-MEK1/2-ERK1/2) cascades was responsible for suppression of apoptosis and facilitation of neuronal differentiation of PC12 cells, respectively. Our results suggest that CSs 1-3 are promising candidates as neuroprotective and/or neurotrophic agents for the treatment of various neurodegenerative neurological disorders.  相似文献   

6.
7.
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignant tumor and is refractory to conventional chemotherapy. The aim of this study is therefore to elucidate the mechanism of chemoresistance in ICC which is not fully understood. We generated cisplatin resistant ICC cells via long term exposure to cisplatin and found that these cells are also resistant to 5-fluorouracil (5-FU) and gemcitabine. The chemoresistant cells showed enhanced Bcl-2 expression and reduced Bax expression compared to parental ICC cells. In addition, the resistant cells showed enhanced activation of AKT and extracellular signal-regulated kinase (ERK) 1/2. Inhibition of AKT activation by phosphoinocitide 3-kinase (PI3K) inhibitor LY294002 resulted in reduced Bcl-2 expression and enhanced Bax expression and thus induced apoptosis in the resistant cells, whereas inhibition of ERK1/2 activation by mitogen-activated protein kinase (MEK) inhibitor U0126 did not induce apoptosis without affecting the expression of Bcl-2 and Bax but decreased cell growth. Moreover, the inhibition of AKT or ERK1/2 sensitized the resistant cells to cisplatin and therefore resulted in greatly enhanced cisplatin-induced apoptosis and growth inhibition in the cells. The results indicate that AKT and ERK1/2 signaling mediate chemoresistance in the cells and could be important therapeutic targets for overcoming chemoresistance in ICC.  相似文献   

8.
In the present study, we investigated the selective role of protein kinase C (PKC) isoforms on neurite outgrowth of the GT1 hypothalamic neurons using several PKC isoform-selective inhibitors and transfection-based expression of enhanced green fluorescence protein (EGFP)-fused PKC isoforms. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced neurite outgrowth and growth cone formation, effects that were blocked by GF 109203X (a PKC inhibitor), safingolTM(a PKCalpha-selective inhibitor), but not by rottlerinTM (a PKCdelta-selective inhibitor), indicating that PKCalpha may be selectively involved in neurite outgrowth and cytoskeletal changes of filamentous actin and beta-tubulin. To define the differential localization of PKC isoforms, EGFP-tagged PKCalpha, PKCgamma, and PKCdelta were transfected into GT1 neuronal cells. TPA treatment induced relocalization of PKCalpha-EGFP to growth cones and cell-cell adhesion sites, PKCgamma-EGFP to the nucleus, and PKCdelta-EGFP to the membrane ruffle, respectively. An EGFP chimera of the catalytic domain of PKCalpha (PKCalpha-Cat-EGFP), the expression of which was inducible by doxycycline, was employed to directly ascertain the effect of PKCalpha enzymatic activity on neurite outgrowth of GT1 cells. Transient transfection of PKCalpha-Cat-EGFP alone increased the neurite-outgrowth and doxycycline treatment further augmented the number of neurite-containing cells. We also examined the involvement of the extracellular signal-regulated kinase (ERK) MAP kinase in TPA-induced neurite outgrowth. TPA treatment increased phosphorylated ERK MAP kinase, but not p38 MAP kinase. Specific inhibition of PKCalpha with safingol blocked the phosphorylation of ERK induced by TPA. More importantly, both neurite outgrowth and phosphorylation of ERK by TPA were blocked by PD 098059, a specific inhibitor of MEK (MAP kinase/ERK kinase-1), but not by SB203580, a specific inhibitor of p38 MAP kinase. These results demonstrate that PKCalpha isoform-specific activation is involved in neurite outgrowth of GT1 hypothalamic neuronal cells via ERK, but not the p38 MAP kinase signal pathway.  相似文献   

9.
We have previously shown that liposomes coated with a neoglycolipid constructed from mannotriose and dipalmitoylphosphatidylethanolamine (Man3-DPPE) activate peritoneal macrophages to induce enhanced expression of co-stimulatory molecules and MHC class II. In this study, we investigated the signaling pathways activated by the Man3-DPPE-coated liposomes (OMLs) in a murine macrophage cell line, J774A.1. In response to OML stimulation, ERK among MAPKs was clearly and transiently phosphorylated in J774 cells. ERK phosphorylation was also induced by treatment of the cells with Man3-DPPE and Man3-BSA, but not by uncoated liposomes. In addition, rapid and transient phosphorylation of Akt and Src family kinases (SFKs) was observed in response to OMLs. OML-induced ERK phosphorylation was inhibited by specific inhibitors of PI3K and SFKs, and OML-induced Akt phosphorylation was inhibited by a inhibitor of SFKs. Therefore, OMLs may activate the PI3K/Akt pathway through phosphorylation of Src family kinases to induce ERK activation.  相似文献   

10.
Suramin is a well-known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers. Previous study showed that suramin is an activator of extracellular signal-regulated kinase (ERK1/2) signaling in several cell lines including Chinese hamster ovary cells, although the physiological relevance of this activation remains uncertain. Here, it was shown that suramin enhances neurite outgrowth concomitant with activation of ERK1/2 in Neuro-2a cells, a neuronal cell line. These neurite outgrowth and ERK1/2 activation were significantly inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase, as well as by activation of endogenous adenosine A2A receptors. The suramin-induced phosphorylation of ERK1/2 was also inhibited by inhibitors of Src family kinases. This attenuation of ERK1/2 activity was accompanied by a significant decrease in suramin-induced neurite outgrowth. These results suggest that suramin activates the Src/ERK1/2 signaling pathway that induces neurite outgrowth, both of which are negatively regulated by cAMP produced in response to activation of endogenous adenosine A2A receptors.  相似文献   

11.
Abstract: Activation of metabotropic glutamate receptors (mGluRs) in glia results in significant physiological effects for both the glia and the neighboring neurons; but in many cases, the mGluR subtypes and signal transduction mechanisms mediating these effects have not been determined. In this study, we report that mGluR activation in primary cultures of rat cortical glia results in tyrosine phosphorylation of several proteins, including p44/p42 mitogen-activated protein kinases, also referred to as extracellular signal-regulated kinases (ERK1/2). Incubation of glial cultures with the general mGluR agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylate and the mGluR group I-selective agonists ( RS )-3,5-dihydroxyphenylglycine (DHPG) and l -quisqualate resulted in increased tyrosine phosphorylation of ERK1/2. The group II-selective agonist (2 S ,2' R ,3' R )-2-(2',3'-dicarboxycyclopropyl)glycine and group III-selective agonist l (+)-2-amino-4-phosphonobutyric acid had no effect on tyrosine phosphorylation. DHPG-induced ERK1/2 phosphorylation could be inhibited by an antagonist that acts at group I or group II mGluRs but not by antagonists for group II and group III mGluRs. Protein kinase C (PKC) activators also induced ERK1/2 phosphorylation, but the PKC inhibitor bisindolylmaleimide I did not inhibit DHPG-induced ERK1/2 phosphorylation at a concentration that inhibited the response to phorbol 12,13-dibutyrate. These data suggest that mGluR activation of ERK1/2 in cultured glia is mediated by group I mGluRs and that this effect is independent of PKC activation. Furthermore, immunoblots with antibodies against various mGluR subtypes show expression of mGluR5, but no other mGluRs in our cultures. Taken together, these results suggest that mGluR5 stimulation results in tyrosine phosphorylation of ERK1/2 and other glial proteins.  相似文献   

12.
Plasminogen activator inhibitor 1 (PAI-1) is a major inhibitor of urokinase-type plasminogen activator (uPA). In this study, we explored the role of PAI-1 in cell signaling. In MCF-7 cells, PAI-1 did not directly activate the mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) 1 and ERK2, but instead altered the response to uPA so that ERK phosphorylation was sustained. This effect required the cooperative function of uPAR and the very low density lipoprotein receptor (VLDLr). When MCF-7 cells were treated with uPA-PAI-1 complex in the presence of the VLDLr antagonist, receptor-associated protein, or with uPA-PAI-1(R76E) complex, which binds to the VLDLr with greatly decreased affinity, transient ERK phosphorylation (<5 min) was observed, mimicking the uPA response. ERK phosphorylation was not induced by tissue-type plasminogen activator-PAI-1 complex or by uPA-PAI-1 complex in the presence of antibodies that block uPA binding to uPAR. uPA-PAI-1 complex induced tyrosine phosphorylation of focal adhesion kinase and Shc and sustained association of Sos with Shc, whereas uPA caused transient association of Sos with Shc.By sustaining ERK phosphorylation, PAI-1 converted uPA into an MCF-7 cell mitogen. This activity was blocked by receptor-associated protein and not observed with uPA-PAI-1(R76E) complex, demonstrating the importance of the VLDLr. uPA promoted the growth of other cells in which ERK phosphorylation was sustained, including beta3 integrin overexpressing MCF-7 cells and HT 1080 cells. The MEK inhibitor, PD098059, blocked the growth-promoting activity of uPA and uPA-PAI-1 complex in these cells. Our results demonstrate that PAI-1 may regulate uPA-initiated cell signaling by a mechanism that requires VLDLr recruitment. The kinetics of ERK phosphorylation in response to uPAR ligation determine the function of uPA and uPA-PAI-1 complex as growth promoters.  相似文献   

13.
Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.  相似文献   

14.
The growth factor heregulin-β1 (HRG-β1), which is expressed in breast cancer, activates the HER-2 signaling pathway through induction of heterodimeric complexes of HER-2 with HER-3 or HER-4. It has been shown in many studies that HRG-β1 induces the tumorigenicity and metastasis of breast cancer cells. Matrix metalloproteinase (MMP) 9 is a key enzyme in the degradation of extracellular matrices, and its expression may be dysregulated in breast cancer invasion and metastasis. Resveratrol, a major component in grape, exhibited potential anticarcinogenic activities in both in vitro and in vivo studies. However, the inhibitory effect of resveratrol on HER-2-mediated expression of MMP-9 has not been demonstrated yet.

In the present study, we investigated the anti-invasive mechanism of resveratrol in human breast cancer cells. Human breast cancer MCF-7 cells were exposed to resveratrol (2, 5 and 10 μM). The expression activity of MMP-9 was measured by zymogram analysis. Phosphorylated levels of HER-2 and mitogen-activated protein kinase (MAPK)/ERK were measured by Western blot analysis. Total actin was used as internal control for protein expression. HRG-β1 induced the phosphorylation of HER-2/neu receptor and MMP-9 expression in human breast cancer MCF-7 cells. Resveratrol significantly inhibited HRG-β1-mediated MMP-9 expression in human breast cancer cells. MEK inhibitor induced a marked reduction in MMP-9 expression, and it suggested that ERK1/2 cascade could play an important role in HRG-β1-mediated MMP-9 expression. Furthermore, resveratrol significantly suppressed HRG-β1-mediated phosphorylation of ERK1/2 and invasion of breast cancer cells. However, resveratrol had negligible effects on either HRG-β1-mediated phosphorylation of HER-2 receptor or expression of the tissue inhibitor of MMP, tissue inhibitor metalloproteinase protein 1.

Taken together, our results suggest that resveratrol inhibited MMP-9 expression in human breast cancer cells. The inhibitory effects of resveratrol on MMP-9 expression and invasion of breast cancer cells are, in part, associated with the down-regulation of the MAPK/ERK signaling pathway.  相似文献   


15.
Li AY  Han M  Zheng B  Wen JK 《FEBS letters》2008,582(2):243-248
Roscovitine is a potent CDK inhibitor often used as a biological tool in cell-cycle studies, but its working mechanism and real targets in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we observed that ERK1/2 phosphorylation induced by Ang II was abrogated by pretreating VSMCs with roscovitine for 15h. Pretreating VSMCs with roscovitine also inhibited Ang II-induced c-Jun expression and phosphorylation. We further demonstrated that roscovitine could suppress the DNA binding activity of c-Jun and activation of angiotensinogen promoter by Ang II. These results suggest that roscovitine represses Ang II-induced angiotensinogen expression by inhibiting activation of ERK1/2 and c-Jun.  相似文献   

16.
The procoagulant thrombin stimulates endothelial cells (EC) to undergo rapid cytoskeleton changes via signaling pathways that induce multiple phenotypic changes, including alterations in permeability, vasomotor tone, adhesion molecule synthesis, and leukocyte trafficking. We studied a novel role of thrombin's action on the endothelium that results in MIF secretion, which is linked to myosin light chain (MLC) and extracellular signal-regulated kinase (ERK(1/2))-dependent nuclear signaling. In bovine pulmonary artery EC (BPAEC), thrombin treatment induced intracellular MLC phosphorylation within 15 min, followed by a significant increase in MIF secretion within 30 min. Thrombin treatment induced biphasic ERK(1/2) phosphorylation with an early phase occurring at 15 min and a later phase at 120 min. To understand the role of MIF secretion in thrombin-induced biphasic activation of ERK(1/2), BPAE cells were treated with (i) recombinant MIF, and (ii) the medium collected from thrombin-treated BPAE cells. These studies demonstrated a sustained monophasic ERK(1/2) phosphorylation. Inhibition of MIF secretion by MIF siRNA or antisense-MIF treatment, along with a neutralizing antibody, attenuated the thrombin-induced second phase ERK phosphorylation, suggesting a direct involvement of MIF in the second phase of ERK(1/2) activation. Pretreatment of BPAE cells with an ERK kinase inhibitor and with antisense-MIF significantly inhibited thrombin-induced nuclear factor kappa (NF-kappaB) activation. These results indicate that MIF secretion and ERK phosphorylation both play a necessary role in thrombin induced NF-kappaB activation.  相似文献   

17.
Icariin, a flavonoid isolated from Epimedii herba, stimulated phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177, Akt (Ser473) and ERK1/2 (Thr202/Tyr204). The icariin-induced eNOS phosphorylation was abolished by an androgen receptor (AR) antagonist, nilutamide in human umbilical vein endothelial cells (HUVECs). Furthermore, it was also reduced in the cells transfected with small interfering RNA in which the expression of AR was broken down. The icariin-induced eNOS phosphorylation was inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. These data suggest that icariin stimulates release of NO by AR-dependent activation of eNOS in HUVECs. PI3K/Akt and MAPK-ERK kinase (MEK)/ERK1/2 pathways were involved in the phosphorylation of eNOS by icariin.  相似文献   

18.
We have investigated mechanisms of nicotine-induced phosphorylation of extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and cAMP response element binding protein (CREB) in PC12h cells. Nicotine transiently induced ERK phosphorylation at more than 1 microM. The maximal level of nicotine-induced ERK phosphorylation was lower than that of the membrane depolarization induced and, to a great extent, the nerve growth factor (NGF)-induced ERK phosphorylation. Nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitors had no significant effect on nicotine-induced ERK phosphorylation. L-Type voltage-sensitive calcium channel antagonists inhibited nicotine-induced ERK phosphorylation. Calcium imaging experiments showed that alpha7-containing nAChR subtypes were functional at 1 microM of nicotine in the nicotine-induced calcium influx, and non-alpha7 nAChRs were prominent in the Ca(2+) influx at 50 microM of nicotine. An expression of dominant inhibitory Ras inhibited nicotine-induced ERK phosphorylation. A calmodulin antagonist, a CaM kinase inhibitor, a MAP kinase kinase inhibitor inhibited nicotine-induced ERK and CREB phosphorylation. The time course of the phosphorylation of CREB induced by nicotine was similar to that of ERK induced by nicotine. These results suggest that non-alpha7 nAChRs are involved in nicotine-induced ERK phosphorylation through CaM kinase and the Ras-MAP kinase cascade and most of the nicotine-induced CREB phosphorylation is mediated by the ERK phosphorylation in PC12h cells.  相似文献   

19.
20.
Functional SDF1 alpha/CXCR4 signaling in the developing spinal cord   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号