首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PMCA1-4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca(2+)](c). This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.  相似文献   

2.
Plasma membrane calcium/calmodulin-dependent ATPases (PMCAs) are high affinity calcium pumps that extrude calcium from the cell. Emerging evidence suggests a novel role for PMCAs as regulators of calcium/calmodulin-dependent signal transduction pathways via interaction with specific partner proteins. In this work, we demonstrate that endogenous human PMCA2 and -4 both interact with the signal transduction phosphatase, calcineurin, whereas, no interaction was detected with PMCA1. The strongest interaction was observed between PMCA2 and calcineurin. The domain of PMCA2 involved in the interaction is equivalent to that reported for PMCA4b. PMCA2-calcineurin interaction results in inhibition of the calcineurin/nuclear factor of activated T-cells signalling pathway.  相似文献   

3.
The ubiquitous InsP3/Ca2+ signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca2+ and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca2+] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP3-induced Ca2+ release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP3/Ca2+ signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca2+ signals; (2) cyclosporin A and FK506, inhibitors of Ca2+/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca2+ oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca2+ responses does not involve Ca2+ entry into the cells; (4) cyclosporin A increases InsP3-dependent Ca2+ release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca2+ responses, indicating that PKA and calcineurin act antagonistically on the InsP3/Ca2+ signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP3/Ca2+ signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations.  相似文献   

4.
《Cell calcium》2011,49(6):352-357
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca2+ pump(s) (PMCA) isoform 1. PMCA extrude Ca2+ from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1–4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca2+–Mg2+-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant = 17 ± 2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant = 45 ± 4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca2+ concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

5.
Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca2+ clearance and partially attenuated cellular acidification during KCl-stimulated Ca2+ influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.  相似文献   

6.
Dehydroepiandrosterone (DHEA) is a putative anti-stress agent and stress is associated with the secretion of catecholamine from the adrenal gland, but the effects of DHEA on catecholamine secretion are not fully understood. Using bovine chromaffin cells, we found that DHEA inhibited catecholamine secretion and cytosolic Ca2+ ([Ca2+]i) rise coupled with nicotinic acetylcholine receptor (nAChR) without exerting an effect on3H-nicotine binding. In the case of high K+ stimulation, DHEA effectively suppressed secretion without affecting [Ca2+]1 rise. Trifluoperazine (TFP), a calmodulin inhibitor, was capable of counteracting the inhibition of DHEA on high K+-induced secretions. In permeabilized cells, DHEA suppressed the Ca2+-induced secretion. These results suggest that DHEA (a) acts as a channel blocker that suppresses Ca2+ influx and subsequent secretions associated with nAChR, or (b) affects the intracellular secretion machinery to suppress high K+-induced secretions without affecting the high K+-induced [Ca2+]i rise.  相似文献   

7.
8.
9.
Activation of Na+,HCO3 cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pHi) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na+,HCO3 cotransporter NBCn1 (slc4a7) and the Ca2+/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aβ. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aβ co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na+,HCO3 cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4+ prepulse. During depolarization with 50 mm extracellular K+ to raise intracellular [Ca2+], Na+,HCO3 cotransport activity was inhibited 20–30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na+,HCO3 cotransport activity in VSMCs when cytosolic [Ca2+] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aβ. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aβ and the Na+/H+ exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aβ and cassette II of NBCn1. Intracellular Ca2+ activates Na+,HCO3 cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification.  相似文献   

10.
11.
The target of the immunosuppressants cyclosporin A(CsA) and FK506 is calcineurin, a highly conserved protein phosphatase that is required for T-cell activation and the regulation of ion homeostasis in yeast. Here we identify two genes, PMR2B and LIC4 which, when overexpressed, suppress the cation-sensitive phenotype of yeast cells lacking calcineurin. PMR2B encodes a Na+/Li+-specific plasma membrane pump and is similar to PMR2A, whose expression is known to be regulated by calcineurin. LIC4 (lithium comvertas) encodes a novel 33-kDa protein with no identity to known proteins. LIC4 overexpression suppresses the Li+-sensitive phenotype of calcineurin mutants but not the defect in recovery from pheromone arrest or viability of calcineurin dependent mutants, indicating a specific role in cation homeostasis. Similarly, lic4 mutations increase the Li+ sensitivity of both wild-type and calcineurin mutant strains, and reduce expression of pmr2A in calcineurin mutant strains, indicating that calcineurin and Lic4 may regulate parallel cation homeostatic pathways. lic4 mutations also exacerbate the Li+-sensitive phenotype of hal3 mutant strains, and overexpression of either Lic4 or Hal3 suppresses the salt sensitivity of mutant strains lacking calcineurin, Hal3, or Lic4, either singly or in combination. Taken together, these observations suggest that calcineurin, Hal3, and Lic4 cooperatively regulate the response of yeast cells to?cation stress. Lic4 is phosphoprotein in vivo and a calcineurin substrate in vitro. By indirect and direct immunofluorescence detection of HA- and GFP-tagged proteins, Lic4 is localized in the nucleus in wild-type cells but predominantly cytoplasmic in cells lacking calcineurin. Taken together, our findings support a model in which calcineurin and Lic4 are components of signalling cascades that regulate cation stress responses in yeast.  相似文献   

12.
The transport of calcium to the extracellular space carried out by plasma membrane Ca2+ pumps (PMCAs) is essential for maintaining low Ca2+ concentrations in the cytosol of eukaryotic cells. The activity of PMCAs is controlled by autoinhibition. Autoinhibition is relieved by the binding of Ca2+-calmodulin to the calmodulin-binding autoinhibitory sequence, which in the human PMCA is located in the C-terminal segment and results in a PMCA of high maximal velocity of transport and high affinity for Ca2+. Autoinhibition involves the intramolecular interaction between the autoinhibitory domain and a not well defined region of the molecule near the catalytic site. Here we show that the fusion of GFP to the C terminus of the h4xb PMCA causes partial loss of autoinhibition by specifically increasing the Vmax. Mutation of residue Glu99 to Lys in the cytosolic portion of the M1 transmembrane helix at the other end of the molecule brought the Vmax of the h4xb PMCA to near that of the calmodulin-activated enzyme without increasing the apparent affinity for Ca2+. Altogether, the results suggest that the autoinhibitory interaction of the extreme C-terminal segment of the h4 PMCA is disturbed by changes of negatively charged residues of the N-terminal region. This would be consistent with a recently proposed model of an autoinhibited form of the plant ACA8 pump, although some differences are noted.  相似文献   

13.
Noradrenaline and adrenaline are secreted by adrenal medulla chromaffin cells via exocytosis. Exocytosis of catecholamines occurs after cell stimulation with various endogenous activators such as nicotine or after depolarization of the plasma membrane and is regulated by calcium ions. Cytosolic [Ca2+] increases in response to cell excitation and triggers a signal‐initiated secretion. Annexins are known to participate in the regulation of membrane dynamics and are also considered to be involved in vesicular trafficking. Some experimental evidence suggests that annexins may participate in Ca2+‐regulated catecholamine secretion. In this report the effect of annexin A6 (AnxA6) isoforms 1 and 2 on catecholamine secretion has been described. Overexpression of AnxA6 isoforms and AnxA6 knock‐down in PC12 cells were accompanied by almost complete inhibition or a 20% enhancement of dopamine secretion, respectively. AnxA6‐1 and AnxA6‐2 overexpression reduced Δ[Ca2+]c upon depolarization by 32% and 58%, respectively, while AnxA6 knock‐down increased Δ[Ca2+]c by 44%. The mechanism of AnxA6 action on Ca2+ signalling is not well understood. Experimental evidence suggests that two AnxA6 isoforms interact with different targets engaged in regulation of calcium homeostasis in PC12 cells. J. Cell. Biochem. 111: 168–178, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Calcineurin mediates repression of plasma membrane Ca2+-ATPase-4 (PMCA4) expression in neurons, whereas c-Myb is known to repress PMCA1 expression in vascular smooth muscle cells (VSMC). Here, we describe a novel mouse VSMC line (MOVAS) in which 45Ca efflux rates decreased 50%, fura 2-AM-based intracellular Ca2+ concentrations ([Ca2+]i) increased twofold, and real-time RT-PCR and Western blot revealed a 40% decrease in PMCA4 expression levels from G0 to G1/S in the cell cycle, where PMCA4 constituted 20% of total PMCA protein. Although calcineurin activity increased fivefold as MOVAS progressed from G0 to G1/S, inhibition of this increase with either BAPTA or retroviral transduction with peptide inhibitors of calcineurin (CAIN), or its downstream target nuclear factor of activated T cells (NFAT) (VIVIT), had no effect on the repression of PMCA4 mRNA expression at G1/S. By contrast, Ca2+-independent activity of the calmodulin-dependent protein kinase-II (CaMK-II) increased eightfold as MOVAS progressed from G0 to G1/S, and treatment with an inhibitor of CaMK-II (KN-93) or transduction of a c-Myb-neutralizing antibody significantly alleviated the G1/S-associated repression of PMCA4. These data show that G1/S-specific PMCA4 repression in proliferating VSMC is brought about by c-Myb and CaMK-II and that calcineurin may regulate cell cycle-associated [Ca2+]i through alternate targets. calcineurin; c-Myb; plasma membrane Ca2+-ATPase-4; cell cycle  相似文献   

15.
The target of the immunosuppressants cyclosporin A(CsA) and FK506 is calcineurin, a highly conserved protein phosphatase that is required for T-cell activation and the regulation of ion homeostasis in yeast. Here we identify two genes, PMR2B and LIC4 which, when overexpressed, suppress the cation-sensitive phenotype of yeast cells lacking calcineurin. PMR2B encodes a Na+/Li+-specific plasma membrane pump and is similar to PMR2A, whose expression is known to be regulated by calcineurin. LIC4 (lithium comvertas) encodes a novel 33-kDa protein with no identity to known proteins. LIC4 overexpression suppresses the Li+-sensitive phenotype of calcineurin mutants but not the defect in recovery from pheromone arrest or viability of calcineurin dependent mutants, indicating a specific role in cation homeostasis. Similarly, lic4 mutations increase the Li+ sensitivity of both wild-type and calcineurin mutant strains, and reduce expression of pmr2A in calcineurin mutant strains, indicating that calcineurin and Lic4 may regulate parallel cation homeostatic pathways. lic4 mutations also exacerbate the Li+-sensitive phenotype of hal3 mutant strains, and overexpression of either Lic4 or Hal3 suppresses the salt sensitivity of mutant strains lacking calcineurin, Hal3, or Lic4, either singly or in combination. Taken together, these observations suggest that calcineurin, Hal3, and Lic4 cooperatively regulate the response of yeast cells to␣cation stress. Lic4 is phosphoprotein in vivo and a calcineurin substrate in vitro. By indirect and direct immunofluorescence detection of HA- and GFP-tagged proteins, Lic4 is localized in the nucleus in wild-type cells but predominantly cytoplasmic in cells lacking calcineurin. Taken together, our findings support a model in which calcineurin and Lic4 are components of signalling cascades that regulate cation stress responses in yeast. Received: 17 August 1998 / Accepted: 7 December 1998  相似文献   

16.
Homer proteins are scaffold molecules with a domain structure consisting of an N-terminal Ena/VASP homology 1 protein-binding domain and a C-terminal leucine zipper/coiled-coil domain. The Ena/VASP homology 1 domain recognizes proline-rich motifs and binds multiple Ca2+-signaling proteins, including G protein-coupled receptors, inositol 1,4,5-triphosphate receptors, ryanodine receptors, and transient receptor potential channels. However, their role in Ca2+ signaling in nonexcitable cells is not well understood. In this study, we investigated the role of Homer2 on Ca2+ signaling in parotid gland acinar cells using Homer2-deficient (Homer2−/−) mice. Homer2 is localized at the apical pole in acinar cells. Deletion of Homer2 did not affect inositol 1,4,5-triphosphate receptor localization or channel activity and did not affect the expression and activity of sarco/endoplasmic reticulum Ca2+-ATPase pumps. In contrast, Homer2 deletion markedly increased expression of plasma membrane Ca2+-ATPase (PMCA) pumps, in particular PMCA4, at the apical pole. Accordingly, Homer2 deficiency increased Ca2+ extrusion by acinar cells. These findings were supported by co-immunoprecipitation of Homer2 and PMCA in wild-type parotid cells and transfected human embryonic kidney 293 (HEK293) cells. We identified a Homer-binding PPXXF-like motif in the N terminus of PMCA that is required for interaction with Homer2. Mutation of the PPXXF-like motif did not affect the interaction of PMCA with Homer1 but inhibited its interaction with Homer2 and increased Ca2+ clearance by PMCA. These findings reveal an important regulation of PMCA by Homer2 that has a central role on PMCA-mediated Ca2+ signaling in parotid acinar cells.  相似文献   

17.
Chromaffin cells were isolated from the posterior cardinal vein of rainbow trout (Oncorhynchus mykiss) to assess their suitability as a model system for studying mechanisms of catecholamine secretion in fish and to evaluate intracellular calcium changes associated with cholinoreceptor stimulation. Immunocytochemistry in concert with fluorescence microscopy was employed to identify characteristic chromaffin cell proteins and thus to confirm the presence of these specific cells in suspensions and cultures. Dopamine-β-hydroxylase, an enzyme of the catecholamine-synthesising Blaschko pathway, was identified in cytoplasmic vesicles of the isolated chromaffin cells. The actin filament-severing protein, scinderin, was co-localized with actin in the sub-plasmalemmal membrane of these chromaffin cells. Intracellular calcium [Ca2+]i was measured in single chromaffin cells by microspectrofluorometry using the fluorescent dye Fura-2. Significant increases in [Ca2+]i were observed in chromaffin cells in response to depolarisation of the cell membrane by high concentrations of K+ or by the stimulation of the cell by the cholinergic receptor agonists, nicotine, acetylcholine or carbachol. The response to the reversible agonist, nicotine, was attenuated following addition of the nicotinic receptor blocker hexamethonium. Such attenuation, however, did not occur when hexamethonium was added after stimulation with the non-specific irreversible cholinergic agonist, carbachol. These results demonstrate the presence of functional cholinoreceptors, linked to intracellular calcium signalling, on isolated trout chromaffin cells and reveal the potential of these cells as a model system for studying aspects of catecholamine secretion in fish.  相似文献   

18.
Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin‐dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild‐type (WT), Junctional adhesion molecule‐A (Jam‐A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P < 0.001) ATP levels, significantly (P < 0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10‐fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used co‐immunoprecipitation studies to show that CASK (Ca2+/calmodulin‐dependent serine kinase), identified for the first time on the sperm flagellum where it co‐localizes with both PMCA4b and JAM‐A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non‐synergistically with each of these molecules via its single PDZ (PDS‐95/Dlg/ZO‐1) domain to either inhibit or promote efflux. In the absence of CASK–JAM‐A interaction in Jam‐A null sperm, CASK–PMCA4b interaction is increased, resulting in inhibition of PMCA4b's enzymatic activity, consequent Ca2+ accumulation, and a ~6‐fold over‐expression of constitutively ATP‐utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM‐A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca2+ homeostasis in sperm is maintained by the relative ratios of CASK–PMCA4b and CASK–JAM‐A interactions. J. Cell. Physiol. 227: 3138–3150, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
20.
The role of the L-type calcium channel (Cav1.2) as a molecular switch that triggers secretion prior to Ca2+ transport has previously been demonstrated in bovine chromaffin cells and rat pancreatic beta cells. Here, we examined the effect of specific Cav1.2 allosteric modulators, BayK 8644 (BayK) and FPL64176 (FPL), on the kinetics of catecholamine release, as monitored by amperometry in single bovine chromaffin cells. We show that 2 μm BayK or 0.5 μm FPL accelerates the rate of catecholamine secretion to a similar extent in the presence either of the permeable Ca2+ and Ba2+ or the impermeable charge carrier La3+. These results suggest that structural rearrangements generated through the binding of BayK or FPL, by altering the channel activity, could affect depolarization-evoked secretion prior to cation transport. FPL also accelerated the rate of secretion mediated by a Ca2+-impermeable channel made by replacing the wild type α11.2 subunit was replaced with the mutant α11.2/L775P. Furthermore, BayK and FPL modified the kinetic parameters of the fusion pore formation, which represent the initial contact between the vesicle lumen and the extracellular medium. A direct link between the channel activity and evoked secretion lends additional support to the view that the voltage-gated Ca2+ channels act as a signaling molecular switch, triggering secretion upstream to ion transport into the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号