首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The receptor activator nuclear factor kappa-B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), are important for maintaining the balance between bone formation and resorption. However, the regulation of microelements on these factors remains unclear. In this study, we used murine osteoblast-like MC3T3-E1 cells to examine the impact of sodium fluoride (NaF) and/or sodium selenite (Na2SeO3) on the OPG/RANKL system. MC3T3-E1 cells were treated with OPG or RANKL siRNA (or left untreated), and subsequently divided into a control group and five experimental groups, which were exposed to different concentrations of NaF and/or Na2SeO3, and subsequently analysed at 24?h. In particular, we examined cell viability, OPG and RANKL mRNA and protein expression, caspase-3 activity, and the cell cycle of the various cell groups. In summary, our findings suggest that the administration of NaF and/or Na2SeO3 affects the expression of OPG in osteoblast-like MC3T3-E1 cells, thereby contributing to the proliferation and apoptosis induced by the OPG.  相似文献   

2.
The p38 mitogen activated protein kinase (p38MAPK) pathway is an important signaling cascade involved in cell growth, differentiation and apoptosis. High glucose activates p38MAPK pathway in different cells, including osteoblasts. In the present study, role of p38MAPK in high glucose induced osteoblast apoptosis and potential of RNA interference (RNAi) targeting p38MAPK as a therapy strategy have been reported. Lentiviral-mediated RNAi effectively reduced p38MAPK and p-p38MAPK expressions in osteoblastic cell line (MC3T3-E1) following high glucose (22 mM) induction. Inhibition of p38MAPK activity significantly suppressed high glucose induced apoptosis of MC3T3-E1 cell and was confirmed by flow cytometry and ultra-structural examination by transmission electronic microscope. Inhibition of p38MAPK also significantly attenuates caspase-3 and bax protein expressions, but increased significantly bcl-2 expression as determined by Western blot analysis. The results suggested that p38MAPK mediates high glucose induced osteoblast apoptosis, partly through modulating the expressions of caspase-3, bax and bcl-2. Inhibition of p38MAPK with lentiviral-mediated RNAi or its specific inhibitor provides a new strategy to treat high glucose induced osteoblast apoptosis.  相似文献   

3.
The role of inositol polyphosphates (InsPs) in the mediation of cellular apoptosis was investigated in mouse MC3T3 osteoblastic cell line. Extracellular administration of InsP4, InsP5, and InsP6 increased apoptosis in a dose-dependent manner. InsP6 was more potent than InsP5 and InsP4 in promoting apoptosis. Inositol hexasulfate (InsS6), a structural analog of InsP6, was used to determine specificity of InsP6-induced apoptosis as measured by acridine orange/ethidium bromide, flow cytometry, and DNA degradation. In order to study the effects of endogenous InsPs on apoptosis, we used NaF and antimycin A as treatment agents to manipulate intracellular levels of InsPs. NaF is known to increase levels of higher InsPs by inhibiting InsPs phosphatases, a process that is reversed by antimycin A because InsPs kinases are inhibited as a result of depletion of cellular ATP pools. Apoptosis was induced in MC3T3 cells in a NaF dose- and time-dependent manner. Approximately 50% apoptosis was observed at 1 mM NaF in 8 h. Prior treatment with 10 μM antimycin A for 30 min significantly reduced the NaF-induced apoptosis as compared with its control. Additionally, we measured changes in AKT phosphorylation, cleavage of caspase-3 and caspase-9, and release of cytochrome C from mitochondria into cytosol. These changes coincided with total cellular InsPs under similar conditions. The data indicated that NaF-induced changes in apoptotic markers could be due to an increased endogenous InsPs that were partially reversed by antimycin A treatment.  相似文献   

4.
Sodium fluoride (NaF) is a source of fluoride ions used in many applications. Previous studies found that NaF suppressed the proliferation of osteoblast MC3T3 E1 cells and induced the apoptosis of chondrocytes. However, little is known about the effects of NaF on human lung BEAS-2B cells. Therefore, we investigated the mode of cell death induced by NaF and its underlying molecular mechanisms. BEAS-2B cells were treated with NaF at concentrations of 0, 0.25, 0.5, 1.0, 2.0, and 4.0 mmol/L. Cell viability decreased and apoptotic cells significantly increased as concentrations of NaF increased over specific periods of time. The IC50 of NaF was 1.9 and 0.9 mM after 24 and 48 h, respectively. The rates of apoptosis increased from 4.8 to 37.7% after NaF exposure. HE staining, electron microscopy, and single cell gel electrophoresis revealed that morphological changes of apoptosis increased with exposure concentrations. RT-PCR and Western blotting were used to detect the apoptotic pathways. The expressions of bax, caspase-3, caspase-9, p53, and the cytoplasmic CytC of the NaF groups increased, while bcl-2 and mitochondrial CytC decreased compared with that of the control group (P < 0.05). Further, the fluorescence intensities of ROS in the NaF groups were higher than those in the control group, and the membrane potential of mitochondria in the NaF group was significantly lower than that of the control group (P < 0.05). These findings suggested that NaF induced apoptosis in the BEAS-2B cells through mitochondria-mediated signal pathways. Our study provides the theoretical foundation and experimental basis for exploring the mechanisms of human lung epithelial cell damage and cytotoxicity induced by fluorine.  相似文献   

5.
6.
Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However, insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs), which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore, we investigated the effects of sodium fluoride (NaF) on the proliferation, differentiation and viability of H9 hESCs. For the first time, we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology, mitochondrial membrane potential (MMP), caspase activities, cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway, coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a p-JNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.  相似文献   

7.
The osteoblasts could be lead to the occurrence of apoptosis by oxidative stress. The zinc transporter family SLC30A (ZnTs) plays an important role in the regulation of zinc homeostasis, however, its function in apoptosis of MC3T3-E1 cells remains unknown. This study was aimed to investigate the role of zinc transporters in cell survival, particularly in MC3T3-E1 cells, during oxidative stress, and the molecular mechanism involved. Our study found that hydrogen peroxide can induce zinc-overloaded in the cells. While high concentration of zinc plays an important role in inducing apoptosis of the MC3T3-E1 cells, we demonstrated that ZnT7 can protect MC3T3-E1 cells and reduce the aggregation of intracellular free zinc ions as well as inhibit apoptosis induced by H2O2. Moreover, ZnT7 overexpression enhanced the anti-apoptotic effects. Interestingly, suppression of ZnT7 by siRNA could significantly exacerbate apoptosis in MC3T3-E1 cells. We also found that ZnT7 promotes cell survival via two distinct signaling pathways involving activation of the PI3K/Akt-mediated survival pathway and activation of MAPK/ERK pathway. Collectively, these results suggest that ZnT7 overexpression significantly protects osteoblasts cells from apoptosis induced by H2O2. This effect is mediated, at least in part, through activation of PI3K/Akt and MAPK/ERK pathways.  相似文献   

8.
Diabetic bone disease is associated with increased oxidative damage and 2-deoxy-d-ribose (dRib) is used to induce oxidative damage similar to that observed in diabetics. To determine if hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) could influence osteoblast dysfunction induced by dRib, osteoblastic MC3T3-E1 cells were treated with dRib and hesperetin. Then, markers of osteoblast function and oxidative damage were examined. Hesperetin (10−7–10−5 M) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and total antioxidant potential of MC3T3-E1 cells in the presence of 20 mM dRib (p < 0.05). Moreover, hesperetin (10−7 M) decreased cellular protein carbonyl (PCO), advanced oxidation protein products (AOPP), and malondialdehyde (MDA) contents of osteoblastic MC3T3-E1 cells in the presence of 20 mM dRib. These results demonstrate that hesperetin attenuates dRib-induced damage, suggesting that hesperetin may be a useful dietary supplement for minimizing oxidative injury in diabetes related bone diseases.  相似文献   

9.
Excessive fluoride affects ameloblast differentiation and tooth development. The fate of fluorinated ameloblasts is determined by multiple signaling pathways in response to a range of stimuli. Both autophagy and apoptosis are involved in the regulation of dental fluorosis as well as in protein synthesis and enamel mineralization. Emerging evidence suggests that autophagy and apoptosis are interconnected and that their interaction greatly influences cell death. However, the effect of autophagy on apoptosis in fluoride-treated ameloblasts is unclear. Here, we employed an in vitro cellular model of fluorosis in mouse ameloblast-like LS8 cells and induced autophagy using sodium fluoride (NaF). Our findings suggest that NaF treatment induces autophagy in LS8 cells, and ATG5 and ATG7 are important molecules involved in this process. We also showed that NaF treatment reduced cell viability in Atg5/7 siRNA and autophagy inhibitor-treated LS8 cells. More importantly, NaF-induced apoptosis can be reversed by inhibiting early stage of autophagy. In conclusion, our study shows that autophagy is closely related to dental fluorosis, and inhibition of autophagy, especially ATG5/7, reduces fluoride-induced cell death and apoptosis.  相似文献   

10.
11.
While the role of p75NTR signaling in the regulation of nerve-related cell growth and survival has been well documented, its actions in osteoblasts are poorly understood. In this study, we examined the effects of p75NTR on osteoblast proliferation and differentiation using the MC3T3-E1 pre-osteoblast cell line. Proliferation and osteogenic differentiation were significantly enhanced in p75NTR-overexpressing MC3T3-E1 cells (p75GFP-E1). In addition, expression of osteoblast-specific osteocalcin (OCN), bone sialoprotein (BSP), and osterix mRNA, ALP activity, and mineralization capacity were dramatically enhanced in p75GFP-E1 cells, compared to wild MC3T3-E1 cells (GFP-E1). To determine the binding partner of p75NTR in p75GFP-E1 cells during osteogenic differentiation, we examined the expression of trkA, trkB, and trkC that are known binding partners of p75NTR, as well as NgR. Pharmacological inhibition of trk tyrosine kinase with the K252a inhibitor resulted in marked reduction in the level of ALPase under osteogenic conditions. The deletion of the GDI binding domain in the p75NTR-GFP construct had no effect on mineralization. Taken together, our studies demonstrated that p75NTR signaling through the trk tyrosine kinase pathway affects osteoblast functions by targeting osteoblast proliferation and differentiation.  相似文献   

12.
Long-time glucocorticoids (GCs) usage causes osteoporosis. In the present study, we explored the potential role of hydrogen sulfide (H2S) against dexamethasone (Dex)-induced osteoblast cell damage, and focused on the underlying mechanisms. We showed that two H2S-producing enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), were significantly downregulated in human osteonecrosis tissues as well as in Dex-treated osteoblastic MC3T3-E1 cells. H2S donor NaHS as well as the CBS activator S-adenosyl-l-methionine (SAM) inhibited Dex-induced viability reduction, death and apoptosis in MC3T3-E1 cells. NaHS activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling, which participated its cyto-protective activity. AMPK inhibition by its inhibitor (compound C) or reduction by targeted-shRNA suppressed its pro-survival activity against Dex in MC3T3-E1 cells. Further, we found that NaHS inhibited Dex-mediated reactive oxygen species (ROS) production and ATP depletion. Such effects by NaHS were again inhibited by compound C and AMPKα1-shRNA. In summary, we show that H2S inhibits Dex-induced osteoblast damage through activation of AMPK signaling. H2S signaling might be further investigated as a novel target for anti-osteoporosis treatment.  相似文献   

13.
Increasing evidence suggests a role for oxidative stress in age-related decrease in osteoblast number and function leading to the development of osteoporosis. This study was undertaken to investigate whether ghrelin, previously reported to stimulate osteoblast proliferation, counteracts tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in MC3T3-E1 osteoblastic cells as well as to characterize the ghrelin receptor (GHS-R) involved in such activity. Pretreatment with ghrelin (10?7–10?11 M) significantly increased viability and reduced apoptosis of MC3T3-E1 cells cultured with t-BHP (250 μM) for three hours at the low concentration of 10?9 M as shown by MTT assay and Hoechst-33258 staining. Furthermore, ghrelin prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization evidenced by the staining of the actin fibers with Phalloidin-FITC by reducing reactive oxygen species generation. The GHS-R type 1a agonist, EP1572 (10?7–10?11 M), had no effect against t-BHP-induced cytotoxicity and pretreatment with the selective GHS-R1a antagonist, d-Lys3-GHRP-6 (10?7 M), failed to remove ghrelin (10?9 M)-protective effects against oxidative injury, indicating that GHS-R1a is not involved in such ghrelin activity. Accordingly, unacylated ghrelin (DAG), not binding GHS-R1a, displays the same protective actions of ghrelin against t-BHP-induced cytotoxicity. Preliminary observations indicate that ghrelin increased the trimethylation of lys4 on histones H3, a known epigenetic mark activator, which may regulate the expression of some genes limiting oxidative damage. In conclusion, our data demonstrate that ghrelin and DAG promote survival of MC3T3-E1 cell exposed to t-BHP-induced oxidative damage. Such effect is independent of GHS-R1a and is likely mediated by a common ghrelin/DAG binding site.  相似文献   

14.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

15.
In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT2 receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT2A and 5-HT2C receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT2A receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT2A receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.  相似文献   

16.
Osteosarcoma is the frequent pediatric bone cancer where pediatric osteosarcoma incidences are more than 10% within the population. Most of the patients with osteosarcoma fall within the age of 15–30 years. Therefore, in this research, we examined the anticancer effect of Rhaponticin against the human osteosarcoma (MG-63) cells. The cytotoxicity of Rhaponticin on the MC3T3-E1 and MG-63 cells was examined through the MTT assay. The intracellular ROS accumulation, cell nuclear morphological alterations, apoptotic cell death and nuclear damages, and MMP status of Rhaponticin administered MG-63 cells were inspected by fluorescent staining techniques. The cell migration was assessed through scratch assay. The mRNA expressions of PI3K-Akt-mTOR signaling proteins were studied by RT-PCR analysis. Rhaponticin showed potent cytotoxicity, substantially inhibited the MG-63 cell growth, and displayed morphological alterations. However, rhaponticin did not affect the MC3T3-E1 cell viability. Rhaponticin administered MG-63 cells demonstrated augmented intracellular ROS accretion, weakened MMP, increased nuclear damages, and increased apoptosis. Rhaponticin effectively down-regulated the PI3K-Akt-mTOR signaling cascade in the MG-63 cells. These outcomes proved that the Rhaponticin can be a hopeful chemotherapeutic agent in the future to treat human osteosarcoma.  相似文献   

17.
18.
Random positioning machine (RPM) and diamagnetic levitation are two essential ground-based methods used to stimulate the effect of microgravity in space life science research. However, the force fields generated by these two methods are fundamentally different, as RPM generates a dynamic force field acting on the surface in contact with supporting substrate, whereas diamagnetic levitation generates a static force field acting on the whole body volume of the object (e.g. cell). Surprisingly, it is hardly studied whether these two fundamentally different force fields would cause different responses in mammalian cells. Thus we exposed cultured MC3T3-E1 osteoblasts to either dynamically stimulated effect of microgravity (d-µg) with RPM or statically stimulated effect of microgravity (s-µg) with diamagnetic levitation, respectively, for 3 h. Subsequently, the cells were examined for changes in cell morphology, cytoskeleton (CSK) structure and Ca2+ signaling. The results show that compared to the condition of normal gravity (1g), both d-µg and s-µg resulted in decrease of cell area and disruption of the microfilaments and microtubules in MC3T3-E1 cells, but cells under d-µg were more smooth and round while those under s-µg exhibited more protrusions. The decrease of cell area and disruption of microfilaments and microtubules induced by d-µg but not s-µg were rescued by inhibition of the stretch-activated channel by gadolinium chloride (Gd). Inhibition of calmodulin (CaM) by inhibitor, W-7, promoted the effects of s-µg on cell area and CSK filaments, but inhibition of calmodulin-dependent protein kinase (CaMK) by inhibitor, KN-93, weakened d-µg-induced effects on cell area and cytoskeleton. In addition, both d-µg and s-µg decreased the CaM expression and CaMKⅡ activity in MC3T3-E1 cells. Furthermore, s-µg resulted in decrease of the intracellular free Ca2+ concentration ([Ca2+]i) in MC3T3-E1 cells, which was reversed by disrupting microfilaments with cytochalasin B (CytB). Instead, d-µg induced increase of [Ca2+]i, which was inhibited by Gd. Taken together these data suggest that dynamic and static stimulated microgravity cause different responses in MC3T3-E1 cells. The dynamic force field acts on stretch-activated channels to induce microfilaments disruption and Ca2+ influx in MC3T3-E1 cells whereas the static force field directly induces microfilament disruption, which in turn decreases the [Ca2+]i in MC3T3-E1 cells. Such findings may have important implications to better understanding microgravity related cellular events and their applications.  相似文献   

19.
BackgroundDipsaci Radix has been clinically used for thousands of years in China for strengthening muscles and bones. Sweroside is the major active iridoid glycoside isolated from Dipsaci Radix. It has been reported that sweroside can promote alkaline phosphatase (ALP) activity in both the human osteosarcoma cell line MG-63 and rat osteoblasts. However, the underlying mechanism involved in these osteoblastic processes is poorly understood.PurposeThis study aimed to characterize the bone protective effects of sweroside and to investigate the signaling pathway that is involved in its actions in MC3T3-E1 cells.MethodsCell proliferation, differentiation and mineralization were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, ALP test and Alizarin Red S staining, respectively. The concentration of sweroside in intracellular and extracellular fluids was determined by ultra-performance liquid chromatography coupled to triple quadrupole xevo-mass spectrometry (UPLC/TQ-XS-MS). Proteins associated with the osteoblastic signaling pathway were analysed by western blot and immunofluorescence methods.ResultsSweroside did not obviously affect the proliferation but significantly promoted the ALP activity and mineralization of MC3T3-E1 cells. The maximal absorption amount 0.465 ng/ml (1.3 × 10−9 M) of sweroside was extremely lower than the tested concentration of 358.340 ng/ml (10−6 M), indicating an extremely low absorption rate by MC3T3-E1 cells. Moreover, the ALP activity, the protein expression of ER-α and G protein-coupled receptor 30 (GPR30) induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. In addition, sweroside also activated the phosphorylation of p38 kinase (p-p38), while the phosphorylation effects together with ALP and mineralization activities were completely blocked by a p38 antagonist, SB203580. Additionally, the phosphorylation of p38 induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15.ConclusionsThe present study indicated that sweroside, as a potential agent in treatment of osteoporosis, might exert beneficial effects on MC3T3-E1 cells by interaction with the membrane estrogen receptor-α and GPR30 that then activates the p38 signaling pathway. This is the first study to report the specific mechanism of the effects of sweroside on osteoblastic differentiation and mineralization of MC3T3-E1 cells.  相似文献   

20.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in -minimal essential medium containing either vehicle, genistein (10–7–10–5 M) or daidzein (10–7–10–5 M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein (10–5 M) or daidzein (10–5 M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10–7 M) or cycloheximide (10–6 M) in the absence or presence of isoflavones. Moreover, when genistein (10–7–10–5 M) or daidzein (10–6 and 10–5 M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10–7 M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10–6 and 10–5 M) or daidzein (10–5 M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号