首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimisation of biotechnological processes catalysed by microbial cells requires detailed information about operational limits of the single cells. Their performance is correlated with distinct physiological states. We related these states to cell cycle events, which were found to proceed extremely diversely in different bacterial strains. Characteristic DNA patterns were found flow cytometrically, depending on the type of strain, substrates and growth conditions involved; this information can be used for the development of control strategies of bioprocesses, although some skill is required.Four bacterial strains (the Gram-negative strains Acinetobacter calcoaceticus 69-V, Ralstonia eutropha JMP 134, Ochrobactrum anthropi K2-14 and the Gram-positive strain Rhodococcus erythropolis K2-3) were grown in mono- and mixed cultures on different substrates, and analysed regarding their proliferation behaviour. The resulting DNA distribution patterns provided three types of valuable information. First, correlation of proliferation activity with the appearance of a major part of cells within the C(2) stage of the cell cycle is a strain-specific feature. Second, bacteria usually maintain more than one chromosome under limiting growth conditions: DNA replication is completed in such cases, but cell division fails. Third, high growth rates are associated with uncoupled DNA synthesis. Its general initiation might be genetically determined in the first place, but it is promoted by optimal growth conditions and the presence of substrates that can be metabolised at high rates, thereby allowing substantial amounts of carbon, other nutrients and energy to be used exclusively for DNA synthesis.  相似文献   

2.
In order to better understand the changes in DNA organization during the cell cycle, we quantified the chromatin texture of breast epithelial cells and followed its evolution through a cell cycle. The diversity of quiescent cell states led us to limit this study to proliferating cell phases, and to choose a cell line with no G0 cells, the MDA AG cell line. We recently developed a methodology for characterizing in situ the cell cycle of breast epithelial cell lines using a cell image processor. This method is based on 15 densitometric and texture parameters computed on individual Feulgen-stained nuclei and on multiparametric analysis of the resulting data. Chromatin pattern assessment is based on nine texture parameters measured from grey-level co-occurrence and run-length section matrices. In the present study, texture parameter computation showed gradual and progressive modifications of nuclear texture. While discrimination of G1, G2 and M phases was possible, we could not discriminate G1 from S and S from G2. The chromatin pattern (defined by these nine parameters) in the G1 and early S phases, on the one hand, and in the late S and G2 phases, on the other hand, were similar. The parameter values of cells in the S phase progressively increased from G1 to G2. Two interphase chromatin condensation states were distinguished in these breast cells: a base state characteristic of a prereplicative stage and a very granular state characteristic of a postreplicative stage. We hypothesized that S cells are a blend of these two states, the evolution of a non-duplicated state toward a duplicated one.  相似文献   

3.
As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.  相似文献   

4.
Soil microorganisms are applied to evaluate soil quality and significant in restoration ecology for their important roles on nutrient cycle and sensitivity to environment changes. To investigate the effects of re vegetation pattern on soil physicochemical properties and soil bacterial community and the reasons for soil bacterial community discrepancy, the soils of three re vegetation patterns (grass of Miscanthus sinensis, the mixed forest of Alnus nepalensis, Cupressus torulosa and Quercus acutissima, the mixed forest of Cupressus torulosa and Alnus nepalensis) in Kunyang phosphate mine, near Kunming, Yunnan province of China were studied. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR DGGE) and soil physicochemical indices were used to analyze soil bacterial communities (diversity and species composition) and soil physicochemical properties. The results indicated that re vegetation contributed to soil nutrients and soil physicochemical properties were different in these three patterns. As for soil bacterial community, the diversity and species composition varied in different patterns. Pearson correlation showed that soil bacterial community diversity was correlated with re vegetation pattern significantly but not with any soil physicochemical properties determined in this research. Soil bacterial species composition was strongly correlated with soil available nitrogen and re vegetation pattern but no others through Canonical Correspondence Analysis (CCA). It is concluded that both soil physicochemical properties and bacterial community (diversity and species composition) vary in different re vegetation patterns and the reason for diversity difference is re vegetation pattern while the affecting factors of soil bacterial community composition are soil available nitrogen and re vegetation pattern orderly.  相似文献   

5.
An automated method of ribosomal intergenic spacer analysis (ARISA) was developed for the rapid estimation of microbial diversity and community composition in freshwater environments. Following isolation of total community DNA, PCR amplification of the 16S-23S intergenic spacer region in the rRNA operon was performed with a fluorescence-labeled forward primer. ARISA-PCR fragments ranging in size from 400 to 1,200 bp were next discriminated and measured by using an automated electrophoresis system. Database information on the 16S-23S intergenic spacer was also examined, to understand the potential biases in diversity estimates provided by ARISA. In the analysis of three natural freshwater bacterial communities, ARISA was rapid and sensitive and provided highly reproducible community-specific profiles at all levels of replication tested. The ARISA profiles of the freshwater communities were quantitatively compared in terms of both their relative diversity and similarity level. The three communities had distinctly different profiles but were similar in their total number of fragments (range, 34 to 41). In addition, the pattern of major amplification products in representative profiles was not significantly altered when the PCR cycle number was reduced from 30 to 15, but the number of minor products (near the limit of detection) was sensitive to changes in cycling parameters. Overall, the results suggest that ARISA is a rapid and effective community analysis technique that can be used in conjunction with more accurate but labor-intensive methods (e.g., 16S rRNA gene cloning and sequencing) when fine-scale spatial and temporal resolution is needed.  相似文献   

6.
An automated method of ribosomal intergenic spacer analysis (ARISA) was developed for the rapid estimation of microbial diversity and community composition in freshwater environments. Following isolation of total community DNA, PCR amplification of the 16S-23S intergenic spacer region in the rRNA operon was performed with a fluorescence-labeled forward primer. ARISA-PCR fragments ranging in size from 400 to 1,200 bp were next discriminated and measured by using an automated electrophoresis system. Database information on the 16S-23S intergenic spacer was also examined, to understand the potential biases in diversity estimates provided by ARISA. In the analysis of three natural freshwater bacterial communities, ARISA was rapid and sensitive and provided highly reproducible community-specific profiles at all levels of replication tested. The ARISA profiles of the freshwater communities were quantitatively compared in terms of both their relative diversity and similarity level. The three communities had distinctly different profiles but were similar in their total number of fragments (range, 34 to 41). In addition, the pattern of major amplification products in representative profiles was not significantly altered when the PCR cycle number was reduced from 30 to 15, but the number of minor products (near the limit of detection) was sensitive to changes in cycling parameters. Overall, the results suggest that ARISA is a rapid and effective community analysis technique that can be used in conjunction with more accurate but labor-intensive methods (e.g., 16S rRNA gene cloning and sequencing) when fine-scale spatial and temporal resolution is needed.  相似文献   

7.
土壤微生物在物质循环过程中具有重要作用且对环境变化敏感,是衡量土壤质量的重要指标.在恢复生态学研究中具有重要意义。为探究不同植被恢复模式对土壤理化性质和细菌群落的影响以及土壤细菌群落差异的原因,本研究以云南省昆阳磷矿为研究对象,运用PCR-DGGE技术和理化指标测定分析了三种植被恢复模式(芒草丛、旱冬瓜藏柏麻栎混交林、藏柏旱冬瓜混交林)下土壤细菌群落多样性、物种组成及土壤理化性质。结果表明:(1)植被恢复有助于改善土壤养分,不同植被恢复模式下土壤理化性质以及细菌群落多样性和物种组成均存在差异。(2)土壤细菌多样性与植被恢复模式之间具有显著相关性,但与土壤理化指标均无显著相关性。(3)土壤细菌群落物种组成与土壤碱解氮含量以及植被恢复模式间具有极显著相关性,与其他土壤理化指标间无显著相关性。本研究表明磷矿区不同植被恢复模式下土壤理化性质和细菌群落均具有差异,土壤细菌群落多样性差异的主要原因为植被恢复模式不同,物种组成差异的主要原因为土壤碱解氮含量不同,其次为植被恢复模式不同。  相似文献   

8.
施秀珍  王建青  黄志群  贺纪正 《生态学报》2022,42(15):6092-6102
森林是陆地生态系统的重要组成部分,其巨大的生产力和生态服务功能对人类的生存和发展至关重要。森林树种多样性增加能够显著提高森林生产力,关于树种多样性如何影响地下生物多样性及生态功能逐渐受到国内外学者的广泛关注。从土壤微生物及其介导的元素生物地球化学循环这一视角出发,综述了树种多样性对土壤细菌和真菌多样性、群落结构及功能的影响,提出需要进一步深入研究的方向。总体来说,树种多样性有利于增加土壤细菌生物量和多样性,是预测病原性真菌和菌根真菌多样性及群落结构的重要生物因子。树种多样性能增加土壤有机碳储量,增强森林土壤的甲烷氧化能力,并提高土壤磷周转速率及有效磷含量。关于树种多样性对森林土壤氮循环的影响需考虑多样性假说和质量比假说的相对贡献。今后应加强树种多样性对多个营养级之间相互作用的研究;关注树种多样性对生态系统多功能的影响;加强学科交叉,引入微生物种群动态模型和气候模型等模型预测方法,研究树种多样性对全球气候变化的应对机制,以期促进地上植物多样性与地下生态系统功能关系的研究,增强森林生态系统应对未来全球环境变化的能力。  相似文献   

9.
通过直接提取药用植物样品的总DNA,采用长度多态片段PCR (length heterogeneity PCR, LH-PCR)技术研究四川省甘孜藏族自治州的党参、麻黄和独一味3种药用植物内生细菌多样性.结果表明: 同种植物根、茎、叶的LH-PCR图谱相似度很高,条带丰富度差别不大;但不同植物样品之间的差异较大.党参的植物样品条带丰富度最大,麻黄次之,独一味最低.3种药用植物中474 bp长度的细菌是绝对的优势菌群.植物内生细菌多样性与土壤速效磷呈负相关,而与土壤pH值呈正相关.海拔和土壤总氮是影响植物样品内生细菌多样性分布的两个重要环境因子.LH-PCR所得的种群信息能较直观地反映不同植物样品间细菌多样性的差异.因此LH-PCR适用于分析药用植物内生菌多样性.  相似文献   

10.
MOTIVATION: The expression of genes during the cell division process has now been studied in many different species. An important goal of these studies is to identify the set of cycling genes. To date, this was done independently for each of the species studied. Due to noise and other data analysis problems, accurately deriving a set of cycling genes from expression data is a hard problem. This is especially true for some of the multicellular organisms, including humans. RESULTS: Here we present the first algorithm that combines microarray expression data from multiple species for identifying cycling genes. Our algorithm represents genes from multiple species as nodes in a graph. Edges between genes represent sequence similarity. Starting with the measured expression values for each species we use Belief Propagation to determine a posterior score for genes. This posterior is used to determine a new set of cycling genes for each species. We applied our algorithm to improve the identification of the set of cell cycle genes in budding yeast and humans. As we show, by incorporating sequence similarity information we were able to obtain a more accurate set of genes compared to methods that rely on expression data alone. Our method was especially successful for the human dataset indicating that it can use a high quality dataset from one species to overcome noise problems in another. AVAILABILITY: C implementation is available from the supporting website: http://www.cs.cmu.edu/~lyongu/pub/cellcycle/.  相似文献   

11.
A paramount objective of the eukaryotic cell division cycle is to overcome numerous internal and external insults to faithfully duplicate the genetic information once per every cycle. This is carried out by elaborate networks of genome surveillance signaling pathways, termed replication checkpoints. Central to replication checkpoints are two protein kinases, the upstream kinase ATR, and its downstream target kinase, Chk1. When the DNA replication process is interrupted, the ATR-Chk1 pathway transmits signals to delay cell cycle progression, and to maintain fork viability so that DNA duplication can resume after the initial damage is corrected. Previous studies showed that replicative stress not only activated Chk1, but also triggered the ubiquitin-dependent destruction of Chk1 in cultured human cells. In a recent study, we identified the F-box protein, Fbx6, as the mediator that regulates Chk1 ubiquitination and degradation in both normally cycling cells and during replication stress. We further showed that expression levels of Chk1 and Fbx6 exhibited an overall inverse correlation in both cultured cancer cell lines and in breast tumor tissues, and that defects in Chk1 degradation, for instance, due to reduced expression of Fbx6, rendered tumor cells resistant to anticancer treatment. Here we highlight those findings and their implications in the replication checkpoint and cellular sensitivity to cancer therapies.  相似文献   

12.
Initiation of DNA synthesis is triggered by the binding of proteins to replication origins. However, little is known about the order in which specific proteins associate with origin sites during the cell cycle. We show that in cycling cells there are at least two different nucleoprotein complexes at oriC. A factor for inversion stimulation (FIS)-bound nucleoprotein complex, present throughout the majority of the cell cycle, switches to an integration host factor (IHF)-bound form as cells initiate DNA replication. Coincident with binding of IHF, initiator DnaA binds to its previously unoccupied R3 site. In stationary phase, a third nucleoprotein complex forms. FIS is absent and inactive oriC forms a nucleoprotein structure containing IHF that is not observed in cycling cells. We propose that interplay between FIS and IHF aids assembly of initiation nucleoprotein complexes during the cell cycle and blocks initiation at inappropriate times. This exchange of components at replication origins is reminiscent of switching between pre- and post-replicative chromatin states at yeast ARS1.  相似文献   

13.
Bates and Kleckner have recently proposed that bacterial cell division is a licensing agent for a subsequent initiation of DNA replication. They also propose that initiation mass for DNA replication is not constant. These two proposals do not take into account older data showing that initiation of DNA replication can occur prior to the division event. This critical analysis is derived from measurements of DNA replication during the division cycle in cells growing at different, and more rapid, growth rates. Furthermore, mutants impaired in division can initiate DNA synthesis. The data presented by Bates and Kleckner do not support the proposal that initiation mass is variable, and the proposed pattern of DNA replication during the division cycle of the K12 cells analysed is not consistent with prior data on the pattern of DNA replication during the division cycle.  相似文献   

14.
The effect of light and dark on growth, DNA replication and cell division of two marine phytoplankters Thalassiosira weissflogii (a diatom) and Hymenomonas carterae (a coccolithophorid) was investigated using flow cytometry. The two species displayed very differing behavior. When transferred from light to prolonged darkness, all coccolithophorid cells were arrested at the beginning of the G1 stage of the cell cycle. When shifted back into light, they resumed cycling at a rate slightly slower than prior to arrest. In contrast, diatom cells were arrested either in the G1 or G2 stage of the cell cycle in the dark. Upon re-exposure to light, cells which had been dark-arrested in G1 resumed cycling at the same rate as prior to arrest, while cells arrested in G2 cycled much more slowly. These results suggest that in both species, light control of cell cycle progression is effective only over a restricted part of the cell cycle, as has been hypothesized by Spudich & Sager (J cell biol 83 (1980) 136) [38] for Chlamydomonas. In the coccolithophorid there is a single light-dependent segment located at the beginning of G1, whereas the diatom appears to have two such segments, one in G1 and the other in G2, corresponding to two different light requiring processes.  相似文献   

15.
16.
The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils. While 16S rRNA gene sequence analysis indicates these cloned metagenomes contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. When grouped at 85% identity, only 1.5% of the adenylation domain, 1.2% of the ketosynthase, and 9.3% of the ketosynthase alpha sequence clusters contained sequences from all three metagenomes. Although there is unlikely to be a simple correlation between biosynthetic gene sequence diversity and the diversity of metabolites encoded by the gene clusters in which these genes reside, our analysis further suggests that sequences in one soil metagenome are so distantly related to sequences in another metagenome that they are, in many cases, likely to arise from functionally distinct gene clusters. The marked differences observed among collections of biosynthetic genes found in even ecologically similar environments suggest that prokaryotic natural product biosynthesis diversity is, like bacterial species diversity, potentially much larger than appreciated from culture-based studies.  相似文献   

17.
Random-amplified polymorphic DNA (RAPD) markers were used to determine genetic relationships among Phaseolus vulgaris breeding populations. Genetic distances were calculated from the distribution of 317 RAPD markers among 8 parents, 10 individuals from 8 cycle-one populations, 10 individuals from 6 cycle-two populations and 10 individuals from 2 cycle-three populations of a conical cross. Genetic distances between populations and parents were consistent with their degree of relationship in the crossing scheme indicating that a RAPD analysis is a sensitive and useful method for categorizing breeding materials according to their genetic similarities. Genetic variation among individuals within populations increased from cycle one to cycle three and variation among populations within the cycles decreased from cycle one to cycle three in the conical cross. The results showed that this crossing scheme can be used to collect the genetic diversity in eight parents into a single plant breeding population. Abbreviations: CBB, common bacterial blight; GD, genetic distance; RAPD, random-amplified polymorphic DNA  相似文献   

18.
Herbivorous insects acquire microorganisms from host plants or soil, but it remains unclear how the diversity and functional composition of host plants contribute to structuring herbivore microbiomes. Within a controlled tree diversity setting, we used DNA metabarcoding of 16S rRNA to assess the contribution of Lepidoptera species and their local environment (particularly, tree diversity, host tree species, and leaf traits) to the composition of associated bacterial communities. In total, we obtained 7,909 bacterial OTUs from 634 caterpillar individuals comprising 146 species. Tree diversity was found to drive the diversity of caterpillar‐associated bacteria both directly and indirectly via effects on caterpillar communities, and tree diversity was a stronger predictor of bacterial diversity than diversity of caterpillars. Leaf toughness and dry matter content were important traits of the host plant determining bacterial species composition, while leaf calcium and potassium concentration influenced bacterial richness. Our study reveals previously unknown linkages between trees and their characteristics, herbivore insects, and their associated microbes, which contributes to developing a more nuanced understanding of functional dependencies between herbivores and their environment, and has implications for the consequences of plant diversity loss for trophic interactions.  相似文献   

19.
Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate? and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment.  相似文献   

20.
What's taking so long? S-phase entry from quiescence versus proliferation   总被引:9,自引:0,他引:9  
There is a short window in the mammalian cell cycle during which cells can respond to extracellular cues by withdrawing temporarily from the cell cycle. When these cells re-enter the cell cycle, they require several extra hours in the G1 phase before they replicate their DNA compared with their cycling counterparts. More than 20 years after this initial observation, we still do not understand what is taking so long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号