首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To adequately deal with the inherent complexity of interactions between protein side-chains, we develop and describe here a novel method for characterizing protein packing within a fold family. Instead of approaching side-chain interactions absolutely from one residue to another, we instead consider the relative interactions of contacting residue pairs. The basic element, the pair-wise relative contact, is constructed from a sequence alignment and contact analysis of a set of structures and consists of a cluster of similarly oriented, interacting, side-chain pairs. To demonstrate this construct's usefulness in analyzing protein structure, we used the pair-wise relative contacts to analyze two sets of protein structures as defined by SCOP: the diverse globin-like superfamily (126 structures) and the more uniform heme binding globin family (a 94 structure subset of the globin-like superfamily). The superfamily structure set produced 1266 unique pair-wise relative contacts, whereas the family structure subset gave 1001 unique pair-wise relative contacts. For both sets, we show that these constructs can be used to accurately and automatically differentiate between fold classes. Furthermore, these pair-wise relative contacts correlate well with sequence identity and thus provide a direct relationship between changes in sequence and changes in structure. To capture the complexity of protein packing, these pair-wise relative contacts can be superimposed around a single residue to create a multi-body construct called a relative packing group. Construction of convex hulls around the individual packing groups provides a measure of the variation in packing around a residue and defines an approximate volume of space occupied by the groups interacting with a residue. We find that these relative packing groups are useful in understanding the structural quality of sequence or structure alignments. Moreover, they provide context to calculate a value for structural randomness, which is important in properly assessing the quality of a structural alignment. The results of this study provide the framework for future analysis for correlating sequence changes to specific structure changes.  相似文献   

2.
Predicted protein residue–residue contacts can be used to build three‐dimensional models and consequently to predict protein folds from scratch. A considerable amount of effort is currently being spent to improve contact prediction accuracy, whereas few methods are available to construct protein tertiary structures from predicted contacts. Here, we present an ab initio protein folding method to build three‐dimensional models using predicted contacts and secondary structures. Our method first translates contacts and secondary structures into distance, dihedral angle, and hydrogen bond restraints according to a set of new conversion rules, and then provides these restraints as input for a distance geometry algorithm to build tertiary structure models. The initially reconstructed models are used to regenerate a set of physically realistic contact restraints and detect secondary structure patterns, which are then used to reconstruct final structural models. This unique two‐stage modeling approach of integrating contacts and secondary structures improves the quality and accuracy of structural models and in particular generates better β‐sheets than other algorithms. We validate our method on two standard benchmark datasets using true contacts and secondary structures. Our method improves TM‐score of reconstructed protein models by 45% and 42% over the existing method on the two datasets, respectively. On the dataset for benchmarking reconstructions methods with predicted contacts and secondary structures, the average TM‐score of best models reconstructed by our method is 0.59, 5.5% higher than the existing method. The CONFOLD web server is available at http://protein.rnet.missouri.edu/confold/ . Proteins 2015; 83:1436–1449. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Given sufficient large protein families, and using a global statistical inference approach, it is possible to obtain sufficient accuracy in protein residue contact predictions to predict the structure of many proteins. However, these approaches do not consider the fact that the contacts in a protein are neither randomly, nor independently distributed, but actually follow precise rules governed by the structure of the protein and thus are interdependent. Here, we present PconsC2, a novel method that uses a deep learning approach to identify protein-like contact patterns to improve contact predictions. A substantial enhancement can be seen for all contacts independently on the number of aligned sequences, residue separation or secondary structure type, but is largest for β-sheet containing proteins. In addition to being superior to earlier methods based on statistical inferences, in comparison to state of the art methods using machine learning, PconsC2 is superior for families with more than 100 effective sequence homologs. The improved contact prediction enables improved structure prediction.  相似文献   

4.
Chao Zhang 《Proteins》1998,31(3):299-308
In this study, we exploited an elementary 2-dimensional square lattice model of HP polymers to test the premise of extracting contact energies from protein structures. Given a set of prespecified energies for H–H, H–P, and P–P contacts, all possible sequences of various lengths were exhaustively enumerated to find sequences that have unique lowest-energy conformations. The lowest-energy structures (or native structures) of such (native) sequences were used to extract contact energies using the Miyazawa-Jernigan procedure and here-defined reference state. The relative magnitudes of the original energies were restored reasonably well, but the extracted contact energies were independent of the absolute magnitudes of the initial energies. We turned to a more detailed characterization of the energy landscapes of the native sequences in light of a new theoretical framework on protein folding. Foldability of such sequences imposes two limits on the absolute value of the prespecified energies: a lower bound entailed by the minimum requirement for thermodynamic stability and an upper bound associated with the entrapment of the chain to local minima. We found that these two limits confine the prespecified energy values to a rather narrow range which, surprisingly, also contains the extracted energies in all the cases examined. These results indicate that the quasi-chemical approximation can be used to connect quantitatively the occurrence of various residue–residue contacts in an ensemble of native structures with the energies of the contacts. More importantly, they suggest that the extracted contact energies do contain information on structural stability and can be used to estimate actual structural energetics. This study also encourages the use of structure-derived contact energies in threading. The finding that there is a rather narrow range of energies that are optimal for folding a sequence also cautions the use of arbitrary energy Hamiltonion in minimal folding models. Proteins 31:299–308, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Structural uniqueness is characteristic of native proteins and is essential to express their biological functions. The major factors that bring about the uniqueness are specific interactions between hydrophobic residues and their unique packing in the protein core. To find the origin of the uniqueness in their amino acid sequences, we analyzed the distribution of the side chain rotational isomers (rotamers) of hydrophobic amino acids in protein tertiary structures and derived deltaS(contact), the conformational-entropy changes of side chains by residue-residue contacts in each secondary structure. The deltaS(contact) values indicate distinct tendencies of the residue pairs to restrict side chain conformation by inter-residue contacts. Of the hydrophobic residues in alpha-helices, aliphatic residues (Leu, Val, Ile) strongly restrict the side chain conformations of each other. In beta-sheets, Met is most strongly restricted by contact with Ile, whereas Leu, Val and Ile are less affected by other residues in contact than those in alpha-helices. In designed and native protein variants, deltaS(contact) was found to correlate with the folding-unfolding cooperativity. Thus, it can be used as a specificity parameter for designing artificial proteins with a unique structure.  相似文献   

6.
Chen H  Kihara D 《Proteins》2011,79(1):315-334
Computational protein structure prediction remains a challenging task in protein bioinformatics. In the recent years, the importance of template-based structure prediction is increasing because of the growing number of protein structures solved by the structural genomics projects. To capitalize the significant efforts and investments paid on the structural genomics projects, it is urgent to establish effective ways to use the solved structures as templates by developing methods for exploiting remotely related proteins that cannot be simply identified by homology. In this work, we examine the effect of using suboptimal alignments in template-based protein structure prediction. We showed that suboptimal alignments are often more accurate than the optimal one, and such accurate suboptimal alignments can occur even at a very low rank of the alignment score. Suboptimal alignments contain a significant number of correct amino acid residue contacts. Moreover, suboptimal alignments can improve template-based models when used as input to Modeller. Finally, we use suboptimal alignments for handling a contact potential in a probabilistic way in a threading program, SUPRB. The probabilistic contacts strategy outperforms the partly thawed approach, which only uses the optimal alignment in defining residue contacts, and also the re-ranking strategy, which uses the contact potential in re-ranking alignments. The comparison with existing methods in the template-recognition test shows that SUPRB is very competitive and outperforms existing methods.  相似文献   

7.
Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Vorono? tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.  相似文献   

8.
We introduce a new method for assessing the extent of residue exposure in proteins. For each atom of every residue a Gaussian-weighted atomic surroundings value (the G-neighborhood) is calculated. A normalized sum of G-neighborhood values over all the atoms of a residue is complementary to conventional surface accessibility characteristics. The G-0neighborhood value of a residue is a sensitive indicator of its location, strongly dependent on the 3D structure of a the protein. Correlations between secondary structures and patterns of G-neighborhood values for six different protein molecules are discussed. Comparison of the distribution of hydrophobic and charged residues in the 3D structure for the alcohol-soluble protein crambin and that of five water-soluble proteins (cytochrome c, flavodoxin, myoglobin, rhodanese, and Bence–Jones protein) shows striking differences in their G-neighborhood patterns. Contacts between the prosthetic group and the peptide portion of a protein as well as protein interdomain contacts and monomer–monomer contacts are characterized. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Protein crystals contain two different types of interfaces: biologically relevant ones, observed in protein–protein complexes and oligomeric proteins, and nonspecific ones, corresponding to crystal lattice contacts. Because of the increasing complexity of the objects being tackled in structural biology, distinguishing biological contacts from crystal contacts is not always a trivial task and can lead to wrong interpretation of macromolecular structures. We devised an approach (CRK, core‐rim Ka/Ks ratio) for distinguishing biologically relevant interfaces from nonspecific ones. Given a protein–protein interface, CRK finds a set of homologs to the sequences of the proteins involved in the interface, retrieves and aligns the corresponding coding sequences, on which it carries out a residue‐by‐residue Ka/Ks ratio (ω) calculation. It divides interface residues into a “rim” and a “core” set and analyzes the selection pressure on the residues belonging to the two sets. We developed and tested CRK on different datasets and test cases, consisting of biologically relevant contacts, nonspecific ones or of both types. The method proves very effective in distinguishing the two categories of interfaces, with an overall accuracy rate of 84%. As it relies on different principles when compared with existing tools, CRK is optimally suited to be used in combination with them. In addition, CRK has potential applications in the validation of structures of oligomeric proteins and protein complexes. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
We examine how effectively simple potential functions previously developed can identify compatibilities between sequences and structures of proteins for database searches. The potential function consists of pairwise contact energies, repulsive packing potentials of residues for overly dense arrangement and short-range potentials for secondary structures, all of which were estimated from statistical preferences observed in known protein structures. Each potential energy term was modified to represent compatibilities between sequences and structures for globular proteins. Pairwise contact interactions in a sequence-structure alignment are evaluated in a mean field approximation on the basis of probabilities of site pairs to be aligned. Gap penalties are assumed to be proportional to the number of contacts at each residue position, and as a result gaps will be more frequently placed on protein surfaces than in cores. In addition to minimum energy alignments, we use probability alignments made by successively aligning site pairs in order by pairwise alignment probabilities. The results show that the present energy function and alignment method can detect well both folds compatible with a given sequence and, inversely, sequences compatible with a given fold, and yield mostly similar alignments for these two types of sequence and structure pairs. Probability alignments consisting of most reliable site pairs only can yield extremely small root mean square deviations, and including less reliable pairs increases the deviations. Also, it is observed that secondary structure potentials are usefully complementary to yield improved alignments with this method. Remarkably, by this method some individual sequence-structure pairs are detected having only 5-20% sequence identity.  相似文献   

11.
A survey was compiled of several characteristics of the intersubunit contacts in 58 oligomeric proteins, and of the intermolecular contacts in the lattice for 223 protein crystal structures. The total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contact patches are frequently smaller than patches involved in oligomer interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acids at oligomer interfaces. Arginine is the only amino acid prominent in both types of interfaces. Potentials of mean force for residue–residue contacts at both crystal and oligomer interfaces were derived from comparison of the number of observed residue–residue interactions with the number expected by mass action. They show that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. They also suggest that complex salt bridges with certain amino acid compositions might be important in oligomer formation. For a protein that is recalcitrant to crystallization, substitution of lysine residues with arginine or glutamine is a recommended strategy. Proteins 28:494–514, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence‐search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino‐acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence‐search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z‐score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales‐up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web‐server that is freely available at http://www.bo‐protscience.fr/forsa .  相似文献   

13.
Fuchs A  Kirschner A  Frishman D 《Proteins》2009,74(4):857-871
Despite rapidly increasing numbers of available 3D structures, membrane proteins still account for less than 1% of all structures in the Protein Data Bank. Recent high-resolution structures indicate a clearly broader structural diversity of membrane proteins than initially anticipated, motivating the development of reliable structure prediction methods specifically tailored for this class of molecules. One important prediction target capturing all major aspects of a protein's 3D structure is its contact map. Our analysis shows that computational methods trained to predict residue contacts in globular proteins perform poorly when applied to membrane proteins. We have recently published a method to identify interacting alpha-helices in membrane proteins based on the analysis of coevolving residues in predicted transmembrane regions. Here, we present a substantially improved algorithm for the same problem, which uses a newly developed neural network approach to predict helix-helix contacts. In addition to the input features commonly used for contact prediction of soluble proteins, such as windowed residue profiles and residue distance in the sequence, our network also incorporates features that apply to membrane proteins only, such as residue position within the transmembrane segment and its orientation toward the lipophilic environment. The obtained neural network can predict contacts between residues in transmembrane segments with nearly 26% accuracy. It is therefore the first published contact predictor developed specifically for membrane proteins performing with equal accuracy to state-of-the-art contact predictors available for soluble proteins. The predicted helix-helix contacts were employed in a second step to identify interacting helices. For our dataset consisting of 62 membrane proteins of solved structure, we gained an accuracy of 78.1%. Because the reliable prediction of helix interaction patterns is an important step in the classification and prediction of membrane protein folds, our method will be a helpful tool in compiling a structural census of membrane proteins.  相似文献   

14.
Prediction of protein residue contacts with a PDB-derived likelihood matrix   总被引:8,自引:0,他引:8  
Proteins with similar folds often display common patterns of residue variability. A widely discussed question is how these patterns can be identified and deconvoluted to predict protein structure. In this respect, correlated mutation analysis (CMA) has shown considerable promise. CMA compares multiple members of a protein family and detects residues that remain constant or mutate in tandem. Often this behavior points to structural or functional interdependence between residues. CMA has been used to predict pairs of amino acids that are distant in the primary sequence but likely to form close contacts in the native three-dimensional structure. Until now these methods have used evolutionary or biophysical models to score the fit between residues. We wished to test whether empirical methods, derived from known protein structures, would provide useful predictive power for CMA. We analyzed 672 known protein structures, derived contact likelihood scores for all possible amino acid pairs, and used these scores to predict contacts. We then tested the method on 118 different protein families for which structures have been solved to atomic resolution. The mean performance was almost seven times better than random prediction. Used in concert with secondary structure prediction, the new CMA method could supply restraints for predicting still undetermined structures.  相似文献   

15.
We have demonstrated that, among proteins of the same size, alpha/beta proteins have on the average a greater number of contacts per residue due to their more compact (more "spherical") structure, rather than due to tighter packing. We have examined the relationship between the average number of contacts per residue and folding rates in globular proteins according to general protein structural class (all-alpha, all-beta, alpha/beta, alpha+beta). Our analysis demonstrates that alpha/beta proteins have both the greatest number of contacts and the slowest folding rates in comparison to proteins from the other structural classes. Because alpha/beta proteins are also known to be the oldest proteins, it can be suggested that proteins have evolved to pack more quickly and into looser structures.  相似文献   

16.
The identification of proton contacts from NOE spectra remains the major bottleneck in NMR protein structure calculations. We describe an automated assignment-free system for deriving proton contact probabilities from NOESY peak lists that can be viewed as a quantitative extension of manual assignment techniques. Rather than assigning contacts to NOESY crosspeaks, a rigorous Bayesian methodology is used to transform initial proton contact probabilities derived from a set of 2992 protein structures into posterior probabilities using the observed crosspeaks as evidence. Given a target protein, the Bayesian approach is used to derive probabilities for all possible proton contacts. We evaluated the accuracy of this approach at predicting proton contacts on 60 15N separated NOESY and 13C separated NOESY datasets simulated from experimentally determined NMR structures and compared it to CYANA, an established method for proton constraint assignment. On average, at the highest confidence level, our method accurately identifies 3.16/3.17 long range contacts per residue and 12.11/12.18 interresidue proton contacts per residue. These accuracies represent a significant increase over the performance of CYANA on the same data set. On a difficult real dataset that is publicly available, the coverage is lower but our method retains its advantage in accuracy over CANDID/CYANA. The algorithm is publicly available via the Protinfo NMR webserver .  相似文献   

17.
The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. Their proposed function is to mediate RNA-RNA interactions. We present here the crystal structures of Pyrococcus abyssi Sm protein (PA-Sm1) and its complex with a uridine heptamer. The overall structure of the protein complex, a heptameric ring with a central cavity, is similar to that proposed for the eukaryotic Sm core complex and found for other archaeal Sm proteins. RNA molecules bind to the protein at two different sites. They interact specifically inside the ring with three highly conserved residues, defining the uridine-binding pocket. In addition, nucleotides also interact on the surface formed by the N-terminal alpha-helix as well as a conserved aromatic residue in beta-strand 2 of the PA-Sm1 protein. The mutation of this conserved aromatic residue shows the importance of this second site for the discrimination between RNA sequences. Given the high structural homology between archaeal and eukaryotic Sm proteins, the PA-Sm1.RNA complex provides a model for how the small nuclear RNA contacts the Sm proteins in the Sm core. In addition, it suggests how Sm proteins might exert their function as modulators of RNA-RNA interactions.  相似文献   

18.
The amino acid sequences of soluble, ordered proteins with stable structures have evolved due to biological and physical requirements, thus distinguishing them from random sequences. Previous analyses have focused on extracting the features that frequently appear in protein substructures, such as α‐helix and β‐sheet, but the universal features of protein sequences have not been addressed. To clarify the differences between native protein sequences and random sequences, we analyzed 7368 soluble, ordered protein sequences, by inspecting the observed and expected occurrences of 400 amino acid pairs in local proximity, up to 10 residues along the sequence in comparison with their expected occurrence in random sequence. We found the trend that the hydrophobic residue pairs and the polar residue pairs are significantly decreased, whereas the pairs between a hydrophobic residue and a polar residue are increased. This trend was universally observed regardless of the secondary structure content but was not observed in protein sequences that include intrinsically disordered regions, indicating that it can be a general rule of protein foldability. The possible benefits of this rule are discussed from the viewpoints of protein aggregation and disorder, which are both caused by low‐complexity regions of hydrophobic or polar residues.  相似文献   

19.
We report the derivation of scores that are based on the analysis of residue-residue contact matrices from 443 3-dimensional structures aligned structurally as 96 families, which can be used to evaluate sequence-structure matches. Residue-residue contacts and the more than 3 x 10(6) amino acid substitutions that take place between pairs of these contacts at aligned positions within each family of structures have been tabulated and segregated according to the solvent accessibility of the residues involved. Contact maps within a family of structures are shown to be highly conserved (approximately 75%) even when the sequence identity is approaching 10%. In a comparison involving a globin structure and the search of a sequence databank (> 21,000 sequences), the contact probability scores are shown to provide a very powerful secondary screen for the top scoring sequence-structure matches, where between 69% and 84% of the unrelated matches are eliminated. The search of an aligned set of 2 globins against a sequence databank and the subsequent residue contact-based evaluation of matches locates all 618 globin sequences before the first non-globin match. From a single bacterial serine proteinase structure, the structural template approach coupled with residue-residue contact substitution data lead to the detection of the mammalian serine proteinase family among the top matches in the search of a sequence databank.  相似文献   

20.
The analysis of inter-residue interactions in protein structures provides considerable insight to understand their folding and stability. We have previously analyzed the role of medium- and long-range interactions in the folding of globular proteins. In this work, we study the distinct role of such interactions in the three-dimensional structures of membrane proteins. We observed a higher number of long-range contacts in the termini of transmembrane helical (TMH) segments, implying their role in the stabilization of helix-helix interactions. The transmembrane strand (TMS) proteins are having appreciably higher long-range contacts than that in all-beta class of globular proteins, indicating closer packing of the strands in TMS proteins. The residues in membrane spanning segments of TMH proteins have 1.3 times higher medium-range contacts than long-range contacts whereas that of TMS proteins have 14 times higher long-range contacts than medium-range contacts. Residue-wise analysis indicates that in TMH proteins, the residues Cys, Glu, Gly, Pro, Gln, Ser and Tyr have higher long-range contacts than medium-range contacts in contrast with all-alpha class of globular proteins. The charged residue pairs have higher medium-range contacts in all-alpha proteins, whereas hydrophobic residue pairs are dominant in TMH proteins. The information on the preference of residue pairs to form medium-range contacts has been successfully used to discriminate the TMH proteins from all-alpha proteins. The statistical significance of the results obtained from the present study has been verified using randomized structures of TMH and TMS protein templates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号