首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Cdc2 kinase activity is required for triggering entry into mitosis in all known eukaryotes. Elaborate mechanisms have evolved for regulating Cdc2 activity so that mitosis occurs in a timely manner, when preparations for its execution are complete. In Schizosaccharomyces pombe, Wee1 and a related Mik1 kinase are Cdc2-inhibitory kinases that are required for preventing premature activation of the mitotic program. To identify Cdc2-inhibitory kinases in Drosophila, we screened for cDNA clones that rescue S. pombe wee1- mik1- mutants from lethal mitotic catastrophe. One of the genes identified in this screen, Drosophila wee1 (Dwee1), encodes a new Wee1 homologue. Dwee1 kinase is closely related to human and Xenopus Wee1 homologues, and can inhibit Cdc2 activity by phosphorylating a critical tyrosine residue. Dwee1 mRNA is maternally provided to embryos, and is zygotically expressed during the postblastoderm divisions of embryogenesis. Expression remains high in the proliferating cells of the central nervous system well after cells in the rest of the embryo have ceased dividing. The loss of zygotically expressed Dwee1 does not lead to mitotic catastrophe during postblastoderm cycles 14 to 16. This result may indicate that maternally provided Dwee1 is sufficient for regulating Cdc2 during embryogenesis, or it may reflect the presence of a redundant Cdc2 inhibitory kinase, as in fission yeast.  相似文献   

2.
The kinase Wee1 has been recognized for a quarter century as a key inhibitor of Cyclin dependent kinase 1 (Cdk1) and mitotic entry in eukaryotes. Nonetheless, Wee1 regulation is not well understood and its large amino-terminal regulatory domain (NRD) has remained largely uncharted. Evidence has accumulated that cyclin B/Cdk1 complexes reciprocally inhibit Wee1 activity through NRD phosphorylation. Recent studies have identified the first functional NRD elements and suggested that vertebrate cyclin A/Cdk2 complexes also phosphorylate the NRD. A short NRD peptide, termed the Wee box, augments the activity of the Wee1 kinase domain. Cdk1/2-mediated phosphorylation of the Wee box (on T239) antagonizes kinase activity. A nearby region harbors a conserved RxL motif (RxL1) that promotes cyclin A/Cdk2 binding and T239 phosphorylation. Mutation of either T239 or RxL1 bolsters the ability of Wee1 to block mitotic entry, consistent with negative regulation of Wee1 through these sites. The region in human somatic Wee1 that encompasses RxL1 also binds Crm1, directing Wee1 export from the nucleus. These studies have illuminated important aspects of Wee1 regulation and defined a specific molecular pathway through which cyclin A/Cdk2 complexes foster mitotic entry. The complexity, speed, and importance of regulation of mitotic entry suggest that there is more to be learned.  相似文献   

3.
The metazoan Wee1-like kinases Wee1 and Myt1 regulate the essential mitotic regulator Cdk1 by inhibitory phosphorylation. This regulatory mechanism, which prevents Cdk1 from triggering premature mitotic events, is also induced during the DNA damage response and used to coordinate cell proliferation with crucial developmental events. Despite the previously demonstrated role for Myt1 regulation of Cdk1 during meiosis, relatively little is known of how Myt1 functions at other developmental stages. To address this issue, we have undertaken a functional analysis of Drosophila Myt1 that has revealed novel developmental roles for this conserved cell cycle regulator during gametogenesis. Notably, more proliferating cells were observed in myt1 mutant testes and ovaries than controls. This can partly be attributed to ectopic division of germline-associated somatic cells in myt1 mutants, suggesting that Myt1 serves a role in regulating exit from the cell cycle. Moreover, mitotic index measurements suggested that germline stem cells proliferate more rapidly, in myt1 mutant females. In addition, male myt1 germline cells occasionally undergo an extra mitotic division, resulting in meiotic cysts with twice the normal numbers of cells. Based on these observations, we propose that Myt1 serves unique Cdk1 regulatory functions required for efficient coupling of cell differentiation with cell cycle progression.  相似文献   

4.
Price DM  Jin Z  Rabinovitch S  Campbell SD 《Genetics》2002,161(2):721-731
Wee1 kinases catalyze inhibitory phosphorylation of the mitotic regulator Cdk1, preventing mitosis during S phase and delaying it in response to DNA damage or developmental signals during G2. Unlike yeast, metazoans have two distinct Wee1-like kinases, a nuclear protein (Wee1) and a cytoplasmic protein (Myt1). We have isolated the genes encoding Drosophila Wee1 and Myt1 and are using genetic approaches to dissect their functions during normal development. Overexpression of Dwee1 or Dmyt1 during eye development generates a rough adult eye phenotype. The phenotype can be modified by altering the gene dosage of known regulators of the G2/M transition, suggesting that we could use these transgenic strains in modifier screens to identify potential regulators of Wee1 and Myt1. To confirm this idea, we tested a collection of deletions for loci that can modify the eye overexpression phenotypes and identified several loci as dominant modifiers. Mutations affecting the Delta/Notch signaling pathway strongly enhance a GMR-Dmyt1 eye phenotype but do not affect a GMR-Dwee1 eye phenotype, suggesting that Myt1 is potentially a downstream target for Notch activity during eye development. We also observed interactions with p53, which suggest that Wee1 and Myt1 activity can block apoptosis.  相似文献   

5.
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes.  相似文献   

6.
The cyclin-dependent kinase Cdk1 directly regulates vacuole inheritance   总被引:1,自引:0,他引:1  
In budding yeast, vacuole inheritance is tightly coordinated with the cell cycle. The movement of vacuoles and several other organelles is actin-based and is mediated by interaction between the yeast myosin V motor Myo2 and organelle-specific adaptors. Myo2 binds to vacuoles via the adaptor protein Vac17, which binds to the vacuole membrane protein Vac8. Here we show that the yeast cyclin-dependent kinase Cdk1 phosphorylates Vac17 and that phosphorylation of Vac17 parallels cell cycle-dependent movement of the vacuole. Substitution of the Cdk1 sites in Vac17 decreases its interaction with Myo2 and causes a partial defect in vacuole inheritance. This defect is enhanced in the presence of Myo2 with mutated phosphorylation sites. Thus, Cdk1 appears to control the timing of vacuole movement. The presence of multiple predicted Cdk1 sites in other organelle-specific myosin V adaptors suggests that the inheritance of other cytoplasmic organelles may be regulated by a similar mechanism.  相似文献   

7.
The gene polo encodes a highly conserved serine/threonine protein kinase that has been implicated in several functions during cell division. Polo-like kinases are important positive regulators of cell cycle progression and have also been implicated in the exit from mitosis through the activation of the anaphase-promoting complex. Several data indicate that Plks are required for centrosome function, bipolar spindle organisation and cytokinesis. The intracellular localisation of Plks reflects their multiple roles in cell division, however, in vivo studies that describe the distribution of this protein during different stages of mitosis have never been performed. In the present work, we report the in vivo distribution of a GFP-POLO fusion protein expressed in stable transformants and analysed during the early embryonic development of Drosophila melanogaster. The GFP-POLO protein can be detected in unfertilised oocytes associated with the centromeric region of chromosomes of the polar body and followed until the formation of mitotic domains in later development. Detailed analysis of the dynamic localisation of GFP-POLO during syncytial mitotic cycles shows the timing of localisation to the centrosomes, centromeres and midbody. The results also indicate that GFP-POLO is present in astral microtubules early in mitosis, accumulates around the nuclear envelope until nuclear envelop breakdown and at metaphase associates to spindle microtubules. These in vivo studies show a highly dynamic association of POLO with multiple compartments of the mitotic apparatus. Furthermore, the wide distribution of the GFP-POLO protein to all compartments of the mitotic apparatus provides a valuable tool for future studies on cell cycle during development.  相似文献   

8.
We have previously reported (Petruzzelli, L., Herrera, R., Garcia, R., and Rosen, O. M. (1985) Cancer Cells 3, 115-121) that adult Drosophila melanogaster contain a specific, high-affinity insulin-binding protein. Insulin-dependent protein tyrosine kinase activity has now been identified in Drosophila. Activity first appears at 6-12 h of embryogenesis, increases during the 12-18-h period and falls to low levels in the adult. 125I-insulin was cross-linked specifically and with high affinity to a protein (Mr = 135,000) throughout embryogenesis and in the adult. However, during the 6-12- and 12-18-h periods of embryogenesis when insulin-dependent protein tyrosine kinase activity is expressed, another protein (Mr = 100,000) becomes cross-linked to 125I-insulin. Crosslinking to both proteins was competitively inhibited by the addition of 100 nM insulin. We conclude that the insulin-binding and insulin-dependent protein tyrosine kinase activities of the mammalian insulin receptor are conserved in Drosophila. However, the insulin-dependent protein tyrosine kinase activity of the receptor is detected only during specific times in embryogenesis.  相似文献   

9.
We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A–mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.  相似文献   

10.
11.
Mps1 kinase plays an evolutionary conserved role in the mitotic spindle checkpoint. This system precludes anaphase onset until all chromosomes have successfully attached to spindle microtubules via their kinetochores. Mps1 overexpression in budding yeast is sufficient to trigger a mitotic arrest, which is dependent on the other mitotic checkpoint components, Bub1, Bub3, Mad1, Mad2, and Mad3. Therefore, Mps1 might act at the top of the mitotic checkpoint cascade. Moreover, in contrast to the other mitotic checkpoint components, Mps1 is essential for spindle pole body duplication in budding yeast. Centrosome duplication in mammalian cells might also be controlled by Mps1 , but the fission yeast homolog is not required for spindle pole body duplication. Our phenotypic characterizations of Mps1 mutant embryos in Drosophila do not reveal an involvement in centrosome duplication, while the mitotic spindle checkpoint is defective in these mutants. In addition, our analyses reveal novel functions. We demonstrate that Mps1 is also required for the arrest of cell cycle progression in response to hypoxia. Finally, we show that Mps1 and the mitotic spindle checkpoint are responsible for the developmental cell cycle arrest of the three haploid products of female meiosis that are not used as the female pronucleus.  相似文献   

12.
The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis.  相似文献   

13.
14.
The mitotic inducer Cdc2 is negatively regulated, in part, by phosphorylation on tyrosine 15. Human Wee1 is a tyrosine-specific protein kinase that phosphorylates Cdc2 on tyrosine 15. Human Wee1 is subject to multiple levels of regulation including reversible phosphorylation, proteolysis, and protein-protein interactions. Here we have investigated the contributions made by 14-3-3 binding to human Wee1 regulation and function. We report that the interactions of 14-3-3 proteins with human Wee1 are reduced during mitosis and are stable in the presence of the protein kinase inhibitor UCN-01. A mutant of Wee1 that is incapable of binding to 14-3-3 proteins has lower enzymatic activity, and this likely accounts for its reduced potency relative to wild-type Wee1 in inducing a G(2) cell cycle delay when overproduced in vivo. These findings indicate that 14-3-3 proteins function as positive regulators of the human Wee1 protein kinase.  相似文献   

15.
The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho–SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.  相似文献   

16.
A MAPKK-like mitotic kinase, TOPK, implies the formation of mitotic spindles and spindle midzone and accomplishing cytokinesis, however, its underlying mechanism remains unclear. A microtubule bundling protein, PRC1, plays a pivotal role in the formation of mitotic spindles and spindle midzone. Because of their functional resemblance, we attempted to clarify the links between these two molecules. TOPK supported mitotic advance via the cdk1/cyclin B1-dependent phosphorylation of PRC1. TOPK induced the phosphorylation of PRC1 at T481 in vivo, however, TOPK did not phosphorylate PRC1 in vitro. TOPK induced the phosphorylation of PRC1 at T481 only when the cdk1/cyclin B1 existed simultaneously in vitro. Both the enzymatic activity of TOPK and association competence of TOPK with PRC1 were mandatory for this phosphorylation. TOPK binds to cdk1/cyclin B1, microtubules and PRC1 via its unique region near the C terminus. TOPK co-localized closely with cdk1 throughout the cell cycle in vivo. Collectively, these data indicate that TOPK, which makes a kinase-substrate complex with cdk1/cyclin B1 and PRC1 on microtubules during mitosis, enhances the cdk1/cyclin B1-dependent phosphorylation of PRC1 and thereby strongly promotes cytokinesis.  相似文献   

17.
Rap1 signaling is important for migration, differentiation, axonal growth, and during neuronal polarity. Rap1 can be activated by external stimuli, which in turn regulates specific guanine nucleotide exchange factors such as C3G, among others. Cdk5 functions are also important to neuronal migration and differentiation. Since we found that pharmacological inhibition of Cdk5 by using roscovitine reduced Rap1 protein levels in COS-7 cells and also C3G contains three putative phosphorylation sites for Cdk5, we examined whether the Cdk5-dependent phosphorylation of C3G could affect Rap1 expression and activity. We co-transfected C3G and tet-OFF system for p35 over-expression, an activator of Cdk5 activity into COS-7 cells, and then we evaluated phosphorylation in serine residues in C3G by immunoprecipitation and Western blot. We found that p35 over-expression increased C3G-serine-phosphorylation while inhibition of p35 expression by tetracycline or inhibition of Cdk5 activity with roscovitine decreased it. Interestingly, we found that MG-132, a proteasome inhibitor, rescue Rap1 protein levels in the presence of roscovitine. Besides, C3G-serine-phosphorylation and Rap1 protein levels were reduced in brain from Cdk5−/− as compared with the Cdk5+/+ brain. Finally, we found that p35 over-expression increased Rap1 activity while inhibition of p35 expression by tetracycline or roscovitine decreased Rap1 activity. These results suggest that Cdk5-mediated serine-phosphorylation of C3G may control Rap1 stability and activity, and this may potentially impact various neuronal functions such as migration, differentiation, and polarity.  相似文献   

18.
Mitotic exit integrates the reversal of the phosphorylation events initiated by mitotic kinases with a controlled cytokinesis event that cleaves the cell in two. The mitotic exit network (MEN) of budding yeast regulates both processes, whereas the fission yeast equivalent, the septum initiation network (SIN), controls only the execution of cytokinesis. The components and architecture of the SIN and MEN are highly conserved. At present, it is assumed that the functions of the core SIN-MEN components are restricted to their characterized roles at the end of mitosis. We now show that the NDR (nuclear Dbf2-related) kinase component of the fission yeast SIN, Sid2-Mob1, acts independently of the other known SIN components in G2 phase of the cell cycle to control the timing of mitotic commitment. Sid2-Mob1 promotes mitotic commitment by directly activating the NIMA (Never In Mitosis)-related kinase Fin1. Fin1's activation promotes its own destruction, thereby making Fin1 activation a transient feature of G2 phase. This spike of Fin1 activation modulates the activity of the Pom1/Cdr1/Cdr2 geometry network towards?Wee1.  相似文献   

19.
Wang W  Cronmiller C  Brautigan DL 《Genetics》2008,179(4):1823-1833
Protein phosphatase-1 (PP1) is a major Ser/Thr phosphatase conserved among all eukaryotes, present as the essential GLC7 gene in yeast. Inhibitor-2 (I-2) is an ancient PP1 regulator, named GLC8 in yeast, but its in vivo function is unknown. Unlike mammals with multiple I-2 genes, in Drosophila there is a single I-2 gene, and here we describe its maternally derived expression and required function during embryogenesis. During oogenesis, germline expression of I-2 results in the accumulation of RNA and abundant protein in unfertilized eggs; in embryos, the endogenous I-2 protein concentrates around condensed chromosomes during mitosis and also surrounds interphase nuclei. An I-2 loss-of-function genotype is associated with a maternal-effect phenotype that results in drastically reduced progeny viability, as measured by reduced embryonic hatch rates and larval lethality. Embryos derived from I-2 mutant mothers show faulty chromosome segregation and loss of mitotic synchrony in cleavage-stage embryos, patchy loss of nuclei in syncytial blastoderms, and cuticular pattern defects in late-stage embryos. Transgenic expression of wild-type I-2 in mutant mothers gives dose-dependent rescue of the maternal effect on embryo hatch rate. We propose that I-2 is required for proper chromosome segregation during Drosophila embryogenesis through the coordinated regulation of PP1 and Aurora B.  相似文献   

20.
The constitutive criterion for the evolutionary successful clade of ecdysozoans is a protective exoskeleton. In insects the exoskeleton, the so-called cuticle consists of three functional layers, the waterproof envelope, the proteinaceous epicuticle and the chitinous procuticle that are produced as an extracellular matrix by the underlying epidermal cells. Here, we present our electron-microscopic study of cuticle differentiation during embryogenesis in the fruit fly Drosophila melanogaster. We conclude that cuticle differentiation in the Drosophila embryo occurs in three phases. In the first phase, the layers are established. Interestingly, we find that establishment of the layers occurs partially simultaneously rather than in a strict sequential manner as previously proposed. In the second phase the cuticle thickens. Finally, in the third phase, when secretion of cuticle material has ceased, the chitin laminae acquire their typical orientation, and the epicuticle of the denticles and the head skeleton darken. Our work will help to understand the phenotypes of embryos mutant for genes encoding essential cuticle factors, in turn revealing mechanisms of cuticle differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号